• 제목/요약/키워드: Fuel Cell

검색결과 3,976건 처리시간 0.031초

고분자 전해질 막을 이용한 일체형 재생 연료전지용 촉매전극 개발 (Development of Bifunctional Electrocatalyst for PEM URFC)

  • 임성대;박구곤;손영준;양태현;윤영기;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.23-31
    • /
    • 2004
  • For the fabrication of high efficient bifunctional electrocatalyst of oxygen electrode for PEM URFC (Polymer Electrolyte Membrane Unitized Regenerative Fuel Cell), which is a promising energy storage and conversion system using hydrogen as the energy medium, several bifunctional electrocatalysts were prepared and tested in a single cell URFC system. The catalysts for oxygen electrode revealed fuel cell performance in the order of Pt black > PtIr > PtRuOx > PtRu ~ PtRuIr > PtIrOx, whereas water electrolysis performance in the order of PtIr ~ PtIrOx > PtRu > PtRuIr > PtRuOx ~ Pt black. Considering both reaction modes PtIr was the most effective elctrocatalyst for oxygen electrode of present PEM URFC system. In addition, the water electrolysis performance was significantly improved when Ir or IrOx was added to Pt black just 1 wt.% without the decrease of fuel cell performance. Based on the catalyst screening and the optimization of catalyst composition and loading, the optimum catalyst electrodes for PEM URFC were $1.0mg/cm^2$ of Pt black as hydrogen electrode and $2.0mg/cm^2$ of PtIr (99:1) as oxygen electrode.

7kW 연료전지용 DC/DC 컨버터 설계 (DC/DC Converter Design for 7kW Fuel Cell)

  • 김가인;신민호;이정효
    • 전력전자학회논문지
    • /
    • 제27권2호
    • /
    • pp.150-156
    • /
    • 2022
  • This study proposes a design method of fuel cell DC/DC converter using in 5-ton forklift. For efficient hydrogen usage, targeted fuel cell system recirculates discarded hydrogen after fuel cell reaction. Recirculating hydrogen contains much impurities that reduces output power, increasing pressure that can damage the internal fuel cell reaction system. The proposed DC/DC converter effectively converts fuel cell power considering the voltage drop rate to reflect the recirculating hydrogen. Then, frequency control method is used to regulate the current ripple amount for battery and fuel cell hybrid configuration. Proposed power converter system design and control methods are verified in a practical fuel cell system that implements recirculating hydrogen.

연료전지궤도차량의 동력시스템 (Power System of Fuel Cell Tram)

  • 장세기;목재균;임태훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.320-325
    • /
    • 2005
  • Power of fuel cell tram is supplied by only fuel cell system or hybrid system of fuel cell and battery/super capacity. Fuel cell is operated by hydrogen, which is fed directly from hydrogen tank or by reforming gasoline or methanol into hydrogen. Power system is preferred with hybrid of fuel cell and battery/super capacity since it improves total energy efficiency through interaction of hybrid components and restores energy regenerated by braking. Also, power supply system by fuel cell hybrid should be designed to output optimum energy efficiency depending on driving mode of fuel cell tram.

  • PDF

고온 연료전지 발전단지의 내부계통 고장에 의한 운전환경에 대한 분석 (A Study on the Operation Condition by Electrical Fault in the High Temperature Fuel Cell Plant)

  • 정영환;채희석;김재철;조성민
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.51-59
    • /
    • 2013
  • High temperature fuel cell system, such as molten carbonate fuel cells(MCFC) and solid oxide fuel cells(SOFC), are capable of operating at MW rated power output. The power output change of high temperature fuel cell imposes the thermal and mechanical stresses on the fuel cell stack. To minimize the thermal-mechanical stresses on the stack, increases in the power output of high temperature fuel cell typically must be made at a slow rate. So, the short time interruption of high temperature fuel cell causes considerable generated energy losses. Because of the characteristic of high temperature fuel cell, we analyzed the impact of electrical fault in the fuel cell plant on other fuel cell generators in the same plant site. A various grounding configuration and voltage sag are analyzed. Finally, we presented the solution to minimize the effect of fault on other fuel cell generators.

Polymer Materials for Polymer Electrolyte Fuel Cells: Sulfonated Poly(ether sulfone)s for Fuel Cell Membranes

  • Kim, H.J.;Lee, S.Y.;Cho, E.;Ha, H.Y.;Oh, I.H.;Lim, T.H.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.185-185
    • /
    • 2006
  • The performances of proton exchange membrane fuel cell (PEMFC), direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC) with sulfonated poly(ether sulfone) membrane are reported. Pt/C was coated on the membrane directly to fabricate a MEA for PEMFC operation. A single cell test was carried out using $H_2/air$ gases as fuel and oxidant. A current density of $730\;mA/cm^2$ at 0.60 V was obtained at $70^{\circ}C$. Pt-Ru (anode) and Pt (cathode) were coated on the membrane for DMFC operations. It produced $83\;mW/cm^2$ of maximum power density. The sulfonated poly(ether sulfone) membrane was also used for DFAFC operation under several different conditions. It showed good cell performances for several different kinds of polymer electrolyte fuel cell applications.

  • PDF

주택용 연료전지 효율 향상을 위한 다중 스택 연료전지 시스템의 전력 분배 최적화 (Power Distribution Optimization of Multi-stack Fuel Cell Systems for Improving the Efficiency of Residential Fuel Cell)

  • 강태성;함성현;오환영;최윤영;김민진
    • 한국수소및신에너지학회논문집
    • /
    • 제34권4호
    • /
    • pp.358-368
    • /
    • 2023
  • The fuel cell market is expected to grow rapidly. Therefore, it is necessary to scale up fuel cells for buildings, power generation, and ships. A multi-stack system can be an effective way to expand the capacity of a fuel cell. Multi-stack fuel cell systems are better than single-stack systems in terms of efficiency, reliability, durability and maintenance. In this research, we developed a residential fuel cell stack and system model that generates electricity using the fuel cell-photovoltaic hybrid system. The efficiency and hydrogen consumption of the fuel cell system were calculated according to the three proposed power distribution methods (equivalent, Daisy-chain, and optimal method). As a result, the optimal power distribution method increases the efficiency of the fuel cell system and reduces hydrogen consumption. The more frequently the multi-stack fuel cell system is exposed to lower power levels, the greater the effectiveness of the optimal power distribution method.

Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)

  • Vahc, Zuh Youn;Yi, Sung Chul
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.514-518
    • /
    • 2018
  • The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.

연료전지 차량용 PEMFC 발전모듈의 셀전압 측정 (Cell Voltage Monitoring of PEMFC Power Module for Fuel Cell Electric Vehicle)

  • 박현석;전윤석;구본웅;최서호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.388-391
    • /
    • 2005
  • In this paper, Cell voltage monitoring method is studied for fault detection of PEMFC(Proton Exchange Membrane Fuel Cell) for FCEV(fuel cell electric vehicle). To measuring several hundred of cells in fuel cell stack, The demanded feature of hardware and software is studied and several types are analysed. Finally, $3.26\%$ maximum measuring error is acquired and verified experimentally.

  • PDF

태양광발전과 연료전지의 하이브리드 시스템 (Hybrid System of Solar Cell and Fuel Cell)

  • 황준원;최용성;이경섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.568-573
    • /
    • 2009
  • Because of environmental crisis, researchers are seeking and developing a new, clean, safe and renewable energy. Solar cell energy and fuel cell energy have inestimable development potential. The paper introduces hybrid photovoltaic-fuel cell generation systems supplying a remote power load and hybrid system of solar cell and fuel cell considering the advantages of stable and sustainable energy from the economic point of view. Fuel cell power system has been proven a viable technology to back up severe PV power fluctuations under inclement weather conditions. Fuel cell power generation, containing small land us, is able to alleviate the heavy burden for large surface requirement of PV power plants. In addition, the PV-fuel cell hybrid power system shows a very little potential for lifetime $CO_2$ emissions. In this paper shows the I-V characteristics of the solar module which are dependent on the power of the halogen lamp and the I-V characteristics of fuel cells which are connected in parallel. Also, it shows efficiency of the hybrid system.