• Title/Summary/Keyword: Fuel Flow

Search Result 2,580, Processing Time 0.034 seconds

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells (고분자연료전지의 화학적/기계적 내구성 평가 시간 단축)

  • Sohyeong Oh;Donggeun Yoo;Kim Myeonghwan;Park Jiyong;Choi Yeongjin;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.517-522
    • /
    • 2023
  • A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.

Computational Simulation of Lightning Strike on Aircraft and Design of Lightning Protection System (항공기 낙뢰 전산 시뮬레이션 및 보호시스템 설계)

  • Kim, Jong-Jun;Baek, Sang-Tae;Song, Dong-Geon;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1071-1086
    • /
    • 2016
  • The safety of aircraft can be threatened by environmental factors, such as icing, turbulence, and lightning strike. Due to its adverse effects on aircraft structure and electronic components of aircraft, lightning strike is one of the biggest hazards on aircraft safety. Lightning strike can inject high voltage electric current to the aircraft, which may generate strong magnetic field and extreme hot spots, leading to severe damage of structure or other equipment in aircraft. In this work, mechanism of lightning strike and associated direct and indirect effects of lightning on aircraft were studied. First, on the basis of aircraft lightning regulations provided by Aerospace Recommended Practice (ARP), we considered different lightning waveform and zones of an aircraft. A coupled thermal-electrical computational model of ABAQUS was then used for simulating flow of heat and electric current caused by a lightning strike. A study on fuel tank, with and without lightning protection system, was also conducted using the computational model. Finally, electric current flow on two full scale airframes was analyzed using the EMA3D code.

Operational Characteristics of a Dry Electrostatic Precipitator for Removal of Particles from Oxy Fuel Combustion (순산소 연소 배출 입자 제거용 건식 전기집진장치 운전 특성)

  • Kim, Hak-Joon;Han, Bang-Woo;Oh, Won-Seok;Hwang, Gyu-Dong;Kim, Yong-Jin;Hong, Jeong-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • In a test duct with closed configuration, particle removal performance of an edge-plate type electrostatic precipitator (ESP) was evaluated at a high flow rate in $CO_2$ rich environments by changing gap distances between collection plates, concentrations of $CO_2$, particle sizes, types of electrodes, and types of power supplies. At the same experimental conditions, collection efficiency of particles with the mean particle size, 300 nm, decreased as the gap distance and $CO_2$ concentration increased because of low electrostatic force and low discharged current. In addition, as the particle size increased, the efficiency increased because of high charging rate of the large particles. With the electrode type which has higher surface area of a discharging plate and with the power supply which applied 25 kHz-pulsed DC voltages, the removal efficiency was high even in rich $CO_2$ condition due to high electrostatic force at the same power consumption.

Characteristics of Carbon Dioxide Reduction in the Gliding Arc Plasma Discharge (글라이딩 아크 플라즈마 방전에 의한 이산화탄소 저감 특성)

  • Lim, Mun Sup;Kim, Seung Ho;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.205-209
    • /
    • 2015
  • CCU (Carbon Capture & Utilization) has a potential technology for the reduction and usage of carbon dioxide which is greenhouse gas emitting from a fossil fuel buring. To decompose the carbon dioxide, a three phase gliding arc plasma-catalytic reactor was designed and manufactured. Experiments of carbon dioxide reduction was performed by varying the gas flow rate with feeding the $CO_2$ only as well as the input power, the catalyst type and steam supply with respect to the injection of the mixture of $CO_2$ and $CH_4$. The $CO_2$ decomposition rate was 7.9% and the energy efficiency was $0.0013L/min{\cdot}W$ at a $CO_2$ flow rate of 12 L/min only. Carbon monoxide and oxygen was generated in accordance with the destruction of carbon dioxide. When the injection ratio of $CH_4/CO_2$ reached 1.29, the $CO_2$ destruction and $CH_4$ conversion rates were 37.8% and 56.6% respectively at a power supply of 0.76 kW. During the installation of $NiO/Al_2O_3$ catalyst bed, the $CO_2$ destruction and $CH_4$ conversion rates were 11.5% and 9.9% respectively. The steam supply parameter do not have any significant effects on the carbon dioxide decomposition.

HEAT PIPE TYPE EXHAUST HEAT RECOVERY SYSTEM FOR HOT AIR HEATER

  • Kang, G.C.;Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.654-661
    • /
    • 2000
  • Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes, ${\emptyset}15.88{\times}600mm$ located in the rectangular box of $600{\times}550{\times}330mm$, a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to $-12^{circ}C$ respectively when air flow rate $1,100\textrm{m}^3/hr$. The exhaust gas temperature left the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about $60^{circ}C$ at the air flow rate of $1,100\textrm{m}^3/hr$. This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis.

  • PDF

A Study on the Constructing Discrete Fracture Network in Fractured-Porous Medium with Rectangular Grid (사각 격자를 이용한 단열-다공암반내 분리 단열망 구축기법에 대한 연구)

  • Han, Ji-Woong;Hwang, Yong-Soo;Kang, Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • For the accurate safety assessment of potential radioactive waste disposal site which is located in the crystalline rock it is important to simulate the mass transportation through engineered and natural barrier system precisely, characterized by porous and fractured media respectively. In this work the methods to construct discrete fracture network for the analysis of flow and mass transport through fractured-porous medium are described. The probability density function is adopted in generating fracture properties for the realistic representation of real fractured rock. In order to investigate the intersection between a porous and a fractured medium described by a 2 dimensional rectangular and a cuboid grid respectively, an additional imaginary fracture is adopted at the face of a porous medium intersected by a fracture. In order to construct large scale flow paths an effective method to find interconnected fractures and algorithms of swift detecting connectivities between fractures or porous medium and fractures are proposed. These methods are expected to contribute to the development of numerical program for the simulation of radioactive nuclide transport through fractured-porous medium from radioactive waste disposal site.

  • PDF

Development of Electrokinetic-Flushing Equipment for a Remediation of Soil Contaminated with Radionuclides (방사성오염토양 제염을 위한 동전기세정장치 개발)

  • Kim, Gye-Nam;Jung, Yun-Ho;Lee, Jung-Joon;Moon, Jei-Kwon;Jung, Chong-Hun;Chung, Un-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • This study examined the effect of an electrokinetic-flushing remediation for a soil of a high permeability. The soil was sampled from the site around a research atomic reactor which had high hydro-conductivities due to a high content of sand in the soil. The flow rate of the washing reagent was fast at the beginning but it was reduced as time lapsed. In the case of using citric acid as a washing reagent, the flow rate was fastest, 78.7 ml/day. The removal efficiencies of $Co^{2+}$ and $Cs^+$ from a soil cell with acetic acid were the highest, which were 95.2% and 84.2% respectively. The soil waste-solution volume generated from the electrokinetic remediation was reduced to about 1/20 of that from the soil washing remediation. Meanwhile, the electrokinetic-flushing method enhanced the removal efficiencies of $Co^{2+}$ and $Cs^+$ from the soil by about 6% and 2% respectively, compared to those by the electrokinetic method. Consequently, it was found that the electrokinetic-flushing method was more effective for the remediation of a soil with a high permeability.

  • PDF

Migration and Retardation Properties of Uranium through a Rock Fracture in a Reducing Environment (환원환경에서 암반 균열을 통한 우라늄 이동 및 지연 특성)

  • Baik, Min-Hoon;Park, Chung-Kyun;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.113-122
    • /
    • 2007
  • In this study, uranium migration experiments have been performed using a natural groundwater and a granite core with natural fractures in a glove-box constructed to simulate an appropriate subsurface environment. Groundwater flow experiments using the non-sorbing anionic tracer Br were carried out to analyze the flow properties of groundwater through the fracture of the granite core. The result of the uranium migration experiment showed a breakthrough curve similar to that of the non-sorting Br. This result may imply that uranium migrates as anionic complexes through the rock fracture since uranium can form carbonate complexes at a given groundwater condition. The distribution coefficient $K_d$ of the uranium between the groundwater and the fracture filling material was obtained as low as 2.7 mL/g from a batch sorption experiment. This result agrees well with the result from the migration experiment, showing a faster elution of the uranium through the rock fracture. In order to analyze retardation properties of the uranium through the rock fracture, the retardation factor $R_d({\sim}16.2)$ was obtained by using the $K_d$ obtained from the batch sorption experiment and it was compared with the $R_d({\sim}14.3)$ obtained by using the result from the uranium migration experiment. The values obtained from the both experiments were very similar to each other. This reveals that the retardation of the uranium is mainly occurred by the fracture filling material when the uranium migrates through the fracture of a granite core.

  • PDF

A Prediction of Saturated Hydraulic Conductivity for Compacted Bentonite Buffer in a High-level Radioactive Waste Disposal System (고준위방사성폐기물 처분시스템의 압축 벤토나이트 완충재의 포화 수리전도도 추정)

  • Park, Seunghun;Yoon, Seok;Kwon, Sangki;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.133-141
    • /
    • 2020
  • A geological repository comprises a natural barrier and an engineered barrier system. Its design components consist of canisters, buffers, backfill, and near-field rock. Among the engineered barrier system components, bentonite buffers minimize the groundwater flow from near-field rock and prevent the release of nuclide. Investigation of the hydraulic conductivity of the buffer to groundwater flow is an important factor in the performance evaluation of the stability and integrity of the engineered barrier of the repository. In this study, saturated hydraulic conductivity tests were performed using Gyeongju bentonite at various dry densities and temperatures, and a hydraulic conductivity prediction model was developed through multiple regression analysis using the 120 result sets of hydraulic conductivity. The test results showed that the hydraulic conductivity tends to decrease as the dry density increases. In addition, the hydraulic conductivity increased with increasing temperature. The multiple regression analysis results showed that the coefficient of determination (R2) of the hydraulic conductivity prediction equation was as high as 0.93. The hydraulic conductivity prediction equation presented in this study could be used for the design of engineered barrier systems.

A Study on the Flow Entrainment Characteristics of a Coaxial Nozzle Used in a MILD Combustor with the Change of Nozzle Position and Flow Condition (MILD 연소로에서 노즐의 위치와 유동 조건에 따른 유입량 특성에 관한 연구)

  • Shim, Sung-Hoon;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • A MILD (Moderate and Intense Low oxygen Dilution) combustor decreases NOx formation effectively during the combustion process and NOx formation is affected significantly by the exhaust gas entrainment rate toward fuel and air. The present study focused on the new MILD combustor, which has coaxial cylindrical tube. The outside tube of the new MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. The connection pipe is set between the outer side and the inner side tubes and coaxial air nozzle is inserted at the center of the connection pipe. A numerical analysis is accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of air nozzle exit velocity, nozzle diameter, nozzle exit position and exhaust gas side pressure. The entrainment rate is proportional to the square root of air nozzle exit velocity and negatively proportional to the pressure difference between the exhaust gas side and furnace side pressures. The effect of air nozzle exit position is not considerable on the exhaust gas entrainment.