• 제목/요약/키워드: Fuel Preheating Temperature

Search Result 20, Processing Time 0.023 seconds

Comparative Performance Analysis of Pressurized Solid Oxide Fuel Cell / Gas Turbine Hybrid Systems Considering Different Cell Inlet Preheating Methods (셀 입구 예열방법에 따른 가압형 고체산화물 연료전지/가스터빈 하이브리드 시스템의 성능 비교 해석)

  • Yang Won Jun;Kim Jae Hwan;Kim Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.722-729
    • /
    • 2005
  • Design analysis of the solid oxide fuel cell and gas turbine combined power system is performed considering different methods for preheating cell inlet air. The purpose of air preheating is to keep the temperature difference between cell inlet and outlet within a practical design range thus to reduce thermal stress inside the cell. Three different methods considered are (1) adopting a burner in front of the cell, (2) adopting a preheater (heat transfer from the main combustor) in front of the cell and (3) using recirculation of the cathode exit gas. For each configuration, analyses are carried out for two values of allowable maximum cell temperature difference. Performance characteristics of all cases are compared and design limitations are discussed. Relaxation of the cell temperature difference (larger difference) is proved to ensure higher efficiency. Recirculation of the cathode exit gas exhibits better performance than other methods and this advantage becomes more prominent as the constraint of the cell temperature difference becomes more severe (smaller temperature difference).

Performance Analysis of Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems for Different Cell Inlet Preheating Methods (셀 입구 예열방법에 따른 고체산화물 연료전지/가스터빈 하이브리드 시스템의 성능해석)

  • Yang, Won-Jun;Kim, Tong-Seop;Kim, Jae-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1664-1669
    • /
    • 2004
  • Design analysis of the solid oxide fuel cell and gas turbine combined power system is performed considering different methods for preheating cell inlet air. The purpose of air preheating is to keep the temperature difference between cell inlet and outlet within a practical design range. Three different methods are considered such as a burner in front of the cell, a preheater in front of the cell and recirculation of the cathode exit gas. Analyses are carried out for two maximum cell temperature differences. The greater temperature difference ensures higher efficiency. The cathode exit gas recirculation exhibits better performance than other methods.

  • PDF

A Study on the Combustion Characteristics of Petrochemical Process By-Product (석유화학 공정부산물의 연소특성에 대한 연구)

  • Lee, Yong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1578-1584
    • /
    • 2002
  • Combustion stability is one of the most important factors that must be considered in burning of heavy fuel oil, especially low-grade oil. This paper describes the combustion characteristics of petrochemical process by- product in the combustion furnace of heavy fuel oil. Main experimental parameters were combustion load, excess 02, fuel preheating temperature and air/fuel ratio. The capacity of CRF(combustion research facility) used in this study was 1.0 ton/hr and the burner is steam jet type suitable far heavy oil combustion and manufactured by UNIGAS in Italy. The fuel used in this experiment were 0.5 B-C, petrochemical process by-product and 3 kinds of 0.5 B-C/process by-product mixtures. The combustion stability was monitored and exhaust gases such as CO, NOx, SOx and particulates were measured with the excess $O_2$ and combustion load. The main purpose of this study is to clarify whether process by-product can be used as a boiler fuel or not in consideration of flame stability and emission properties.

On the viscosity of Bunker C fuel oil (방카 C 중유의 점도에 관한 실험)

  • 나윤호
    • Journal of the Korean Professional Engineers Association
    • /
    • v.4 no.15
    • /
    • pp.11-15
    • /
    • 1971
  • Bunker C fuel oil may be taken as a conc. solution of asphalt as a solute. It may be assumpt that there will be unalogical relationship between cone. solution and solute in regological behavior. Investigation was carried out to fiud out the -opitimum preheating temperature. The following results were obtained: the colloidal structure bunker C fuel oil undergoes a transition at around the softening point of the solute asphalt: and the flow charactor changes from non-Newtonian flow to Newtonian as well as its activation energy is memarkably reduced at around softening point of the solute asphalt for the purpose of the improvement of flow charater of Bunker C fuel oil, the preheating must be done above the softening point of a solute asphalt.

  • PDF

Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 성능 특성)

  • Song Rak-Hyun;Song Keun-Suk
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • To improve the conventional cathode-supported tubular solid oxide fuel cell (SOFC) from the viewpoint of low cell power density, expensive fabrication process and high operation temperature, the anode-supported tubular solid oxide fuel cell was investigated. The anode tube of Ni-8mol% $Y_2$O$_3$-stabilized $ZrO_2$ (8YSZ) was manufactured by extrusion process, and, the electrolyte of 8YSZ and the multi-layered cathode of $LaSrMnO_3$(LSM)ILSM-YSZ composite/$LaSrCoFeO_3$ were coated on the surface of the anode tube by slurry dip coating process, subsequently. Their cell performances were examined under gases of humidified hydrogen with 3% water and air. In the thermal cycle condition of heating and cooling rates with $3.33^{\circ}C$/min, the anode-supported tubular cell showed an excellent resistance as compared with the electrolyte-supported planar cell. The optimum hydrogen flow rate was evaluated and the air preheating increased the cell performance due to the increased gas temperature inside the cell. In long-term stability test, the single cell indicated a stable performance of 300 mA/$\textrm{cm}^2$ at 0.85 V for 255 hr.

NOx Reduction with Secondary Air and Fuel in a Catalytic Combustor (촉매연소기에서 2단 공급공기와 연료가 NOx 저감에 미치는 연구)

  • 정진도;이보영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.541-549
    • /
    • 2003
  • A basic experimental study was conducted in order to find the optimum combustion control technology to decrease the thermal NO$_{x}$, by applying the catalytic combustion method with natural gas. NO$_{x}$ emission increased with increasing space velocity due to temperature rising in the furnace. In order to overcome the low resistance to high temperature, secondary air was supplied to the CST combustor. The following secondary fuel formed combustible mixture in part, which resulted in steep increase of the exiting temperature of the 2nd catalyst bed. It led to the more generator of NO$_{x}$, 30∼60% of the 1 st catalyst bed. It might be due to the potential increase of thermal NO$_{x}$.

Application of a Large Scale Heat Pipe System to Preheating the Fuel Gas of Low Heating Value (분리형 히트파이프의 저발열량 연료가스 예열시스템에 대한 적용연구)

  • Park, Heung Soo;Riu, Kap Jong;Lee, Jin Ho;Lee, Yong Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1085-1097
    • /
    • 1999
  • A separate heat pipe system capacity of 3,700kW has been developed and applied to preheating the blast furnace gas for recovery of the waste heat from boiler. The system is designed to preheat the blast furnace gas up to $126^{\circ}C$ by using tho boiler exhaust gas of which temperature is $180^{\circ}C{\sim}220^{\circ}C$. The arrangement of the fin tubes as well as the shape of the fin has been carefully determined to minimize the fouling problems. The heat pipe system was found to be stable in circulation of the working fluid and the range of the temperature variation of the preheated blast furnace gas was within $10^{\circ}C$. It was proved through a long-term test that the selected tube arrangement and the shape of the fins are proper to prevent the fouling problems and that the pay-back period of the system Is within one year.

Experimental Study for Oxygen Methane MILD Combustion in a Laboratory Scale Furnace (Laboratory Scale 연소로를 적용한 산소 메탄 MILD 연소에 대한 실험적 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.6-15
    • /
    • 2016
  • The oxygen fuel MILD (Moderate or Intense Low-oxygen Dilution) combustion has been considered as one of the promising combustion technology for flame stability, high thermal efficiency, low emissions and improved productivity. In this paper, the effect of oxygen and fuel injection condition on formation of MILD combustion was analyzed using lab scale oxygen fuel MILD combustion furnace. The results show that the flame mode was changed from a diffusion flame mode to a split flame mode via a MILD combustion flame mode with increasing the oxygen flow rate. A high degree of temperature uniformity was achieved using optimized combination of fuel and oxygen injection configuration without the need for external oxygen preheating. In particular, the MILD combustion flame was found to be very stable and constant flame temperature region at 7 KW heating rate and oxygen flow rate 75-80 l/min.

Feasibility Study on Thermal Power Plant Condenser Heat Recovery for District Heating and Fuel Line Preheating (발전소 복수기 배열회수의 지역난방 및 연료라인 예열용 활용타당성 검토)

  • Jung, Hoon;Hwang, Gwang-Won
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.40-48
    • /
    • 2009
  • Recovered heat has been considered as a renewable energy in Europe since 2008 because its great effect on energy saving and carbon decreasing in plant process. Energy saving and decreasing green gas are critical issue today, so various technologies to save energy and decrease carbon dioxide in plant process have been applied to many industrial area. In this paper, the feasibility of condenser heat recovery by heat pump in power plant for district heating and fuel line preheating were reviewed by verifying energy (heat) balance and mass balance of power plant model. Some ways to compose proper system to recover heat of condenser are suggested and their possibilities are also reviewed. Limitations on heat recovery in power plant are also reviewed. The results are verified by calculating input/output energy based on actual performance test data of Taean Thermal Power Plant in Korea. There is noticeable improvement of plant performance in some cases which demand low temperature (<100 C) heat like distrcit heating, fuel line heating, and so forth.

  • PDF

Thermodynamic Analysis on Hybrid Molten Carbonate Fuel Cell - Turbo Expander System for Natural Gas Pressure Regulation (용융탄산염연료전지와 터보팽창기를 이용한 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • In the natural gas pressure regulation station, high pressure natural gas is decompressing using pressure regulation valves. Waste pressure occurred in the pressure regulation process can be recovered through adopting turbo expanders. However, in the waste pressure recovery process, Joule Thompson effect causes below $0^{\circ}C$ and this low temperature freezes outside land of pipeline or generates methane hydrate in the pipeline which can block the pipeline. Therefore, turbo expander systems are accompanying with a boiler for preheating natural gas. Molten carbonate fuel cell (MCFC), one of the high temperature fuel cell, can use natural gas as a direct fuel and is also exhausting low emission gas and generating electricity. In this paper, a thermodynamic analysis on the hybrid MCFC-turbo expander system is conducted. The fuel cell system is analyzed for the base load of the hybrid system.