• Title/Summary/Keyword: Fuel cell train

Search Result 13, Processing Time 0.029 seconds

A Fuel Cell Simulator for Control Logic Verification and Operator Training (제어로직 검증 및 운전원 훈련용 연료전지 시뮬레이터)

  • Maeng, Jwayoung;Kim, Sungho;Jung, Wonhee;Kang, Seungyup;Hong, Sukkyu;Lee, Sekyoung;Yook, Simkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • This research presents a fuel cell simulator for control logic verification and operator training. Nowadays, power industries are focusing on clean energy as a response to new policy. The fuel cell can be the solution for clean energy, but operating technology is not well developed compared to other conventional power plans because of its short history. Therefore we need a simulator to verify the new control strategy and train operators, because the price of a real fuel cell system is too high and mechanically weak to be used for these kind of purposes. To develop the simulator, a 300 KW MCFC(Molten Carbonate Fuel Cell) system was modeled with stack, BOPs(pre-reformer, steam generator, etc) and mechanical components(valves, pipes, pumps, blowers, etc). The process model was integrated to emulated control system and HMI(Human Machine Interface). A static load and open loop tests were conducted for verifying the accuracy of the process model, since it is the most important part in the simulation. After verifying the process model, an automatic load change and start-up tests were conducted to verify the performance of a new control strategy(logic and functional loops).

  • PDF

Sizing of Powertrain in Fuel Cell Hybrid Vehicles (연료전지 하이브리드 자동차의 동력전달계의 용량 선정)

  • Zheng, Chun-Hua;Shin, Chang-Woo;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.113-118
    • /
    • 2011
  • Fuel Cell Hybrid Vehicle (FCHV) is one of the most promising candidates for the next generation of transportation. It has many outstanding advantages such as higher energy efficiency and much lower emissions than internal combustion engine vehicles. It also has the ability of recovering braking energy. In order to design an FCHV drive train, we need to determine the size of the electric motor, the Fuel Cell System (FCS), and the battery. In this paper, the methodology for the sizing of these components is introduced based on the driveability constraints of the FCHV. A power management strategy is also presented because the battery energy capacity depends on it. The warm-up time of the FCS is also considered in the power management strategy and the simulation result is compared to that without considering the warm-up time.

Trend of the Recent Technology for the Vehicle with Motor Power Train (최근의 전동기 구동시스템을 가진 자동차의 기술개발 추이)

  • Ha, Hoi-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1027-1029
    • /
    • 2000
  • Electric vehicle(EV), hybrid electric vehicle(HEV) and fuel cell electric vehicle(FEV) are seen as one way of reducing the harmful effects of traffic and of improving energy efficiency. Therefore the status and developing trend of the EV, HEV and FEV are given in this paper. A major aspect of alternative drive trains is the electric drive train. The automotive aspect in developing electric drive trains is emphasized.

  • PDF

Advanced Technologies for the Commercialization of Hydrogen Fuel Cell Electric Vehicle (수소연료전지자동차의 최신기술)

  • Cho, Mann;Koo, Young-Duk
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.132-145
    • /
    • 2014
  • There is a general agreement that performance of hydrogen fuel cell vehicle(FCV) with respect to cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015_2020 will satisfy customer expectations. However cost, durability and the lack of refueling infrastructure remain significant barriers. Cost have been dramatically reduced and durability has been enhanced over the past decade, yet are still about twice what appears to be needed sustainable market success. Advanced Technologies for the commercialization of hydrogen FCV were reviewed.

Development of a Bridge Transported Servo Manipulator System for the Remote Operation and Maintenance of Advanced Spent Fuel Conditioning Process (사용후 핵연료 차세대관리공정 원격 운전/유지보수용 천정이동 서보 매니퓰레이터 시스템 개발)

  • Park, Byung-Suk;Lee, Jong-Kwang;Lee, Hyo-Jik;Choi, Chang-Hwan;Yoon, Kwang-Ho;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.940-948
    • /
    • 2007
  • The Advanced Spent Fuel Conditioning Process(ACP), which is the process of the reduction of uranium oxide by lithium metal in a high temperature molten salt bath for spent fuel, was developed at Korea Atomic Energy Research Institute (KAERI). Since the ACP equipment is located in an intense radiation field (hot cell) as well as in a high temperature, it must be remotely operated and maintained. The ACP hot cell is very narrow so the workspace of the wall-mounted mechanical Master-Slave Manipulators(MSMs) is restricted. A Bridge Transported Servo Manipulator(BTSM) system has been developed to overcome the limitation of an access that is a drawback of the mechanical MSMs. The BTSM system consists ot a bridge crane with telescoping tubeset, a slave manipulator, a master manipulator, and a control system. We applied a bilateral position-position control scheme with friction compensation as force-reflecting controller. In this paper, the transmission characteristics on the tendon-and-pulley train is numerically formulated and analyzed. Also, we evaluate the performance of the force-reflecting servo manipulator.

Design of Triple Loop Current Control for Auxiliary Power Unit of Fuel Cell Train having Grid Connected Inverter Function (계통 연계 기능을 갖는 연료전지 철도차량 보조전원장치의 삼중 루프 전류 제어기 설계)

  • Kwon, Il-Seob;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yual
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.293-302
    • /
    • 2020
  • This study proposes a triple-loop current control method for the auxiliary power unit of fuel cell trains. The auxiliary power unit of fuel cell trains has a grid-connected function when power is supplied to the utility grid. Moreover, the auxiliary power unit of trains has a 1500 V DC link voltage; thus, PWM frequency cannot be increased to a high frequency. Owing to this low PWM frequency condition, creating a triple-loop design is difficult. In this study, a triple-loop controller is developed for a capacitor voltage controller in standalone mode that operates as an auxiliary power supply for trains and for a grid current controller in grid control mode with an inner capacitor voltage controller. The voltage controller employs an inductor current controller inner loop. To overcome low PWM frequency, a design method for the bandwidth of the capacitor voltage controller considering the bandwidth of the inner inductor current controller is described. The effectiveness of the proposed method is proven using PSIM simulation.

Steady State Performance Analysis of Five-mode Hybrid Power Transmission Systems (5-모드 하이브리드 동력전달 시스템의 정상상태 성능분석)

  • Lim, Won-Sik;Kim, Nam-Woong;Choi, Wan-Mug;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • The core of the automotive industry's strategy to handle the climate change can be explained as the development and distribution of the vehicles with high fuel efficiencies and low emission. Clean Diesel, hydrogen fuel cell, electric, and especially hybrid power-train vehicles have been actively studied. This paper dynamically analyzes the performance of a hybrid system's five driving modes. The research subject consists of one engine, two electric motors, two simple planetary gears, and one compound planetary gears with five clutches. To define the steady state equation of the system, interaction formulas of five driving modes are introduced with motion variables and torque variables. These formulas are then used to analyze the speeds, torques, and power flows of each mode.

A Study on the Correlation between Constituents of Designing the Interior of FRT (궤도차량 실내디자인 형상화를 위한 구성요인간의 상관성 연구)

  • Han Suk-Woo;Jin Mi-Ja;Mok Jai-Kyun;Moo Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.274-280
    • /
    • 2005
  • Future-oriented train design should be able to provide highly refined traffic culture and public transportation service by achieving 'higher value addition, sensitization, and humanization' and then securing safety, convenience, and amenity. Therefore, design of FRT, as a means of environment-friendly public transportation, should have new concepts achieving harmony between design and technology. Consequently, when designing interior of trains for public transportation, it should aim for user-centered strategies. This approach is essentially applied to vehicle design and inducement to new concepts by design aesthetics and their verification become requirements for train Interior design, which should be equipped with sensitivity and functional images. Accordingly, a study on the correlation between constituents in order to implement design is essential to design planning and realization of strategies.

  • PDF

High Voltage Wiring System Evaluation Methode of FCEV (Fuel Cell Electric Vehicle) (수소연료전지 자동차용 고전압 배선 시스템 평가 기술 개발)

  • Lim, Ji-Seon;Lee, Jeong-Hun;Lee, Hyo-Jeong;Na, Joo-Ran
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.330-336
    • /
    • 2012
  • FCEV uses 250 ~ 450 V instead of using 12 V battery. High voltage vehicle can cause electric shock, fire and explosion accident. Therefore, it has potential factors that can cause hazard of safety for users. United states of America and Europe legislate regulations such as ECE R100, FMVSS 305 for regulating electrical safety during driving or after collision. The company manufacturing high voltage components must do advanced R&D about Method for improving and confirming the safety of high voltage. We develop the specific hardware components of high voltage wiring system for the power train system and power supply system of Hyundai Motors FCEV. This paper shows test method of insulative performance for securing the electrical safety of high voltage components such as power cable, connectors and buss-bar, and proposals the guide line value for human safety of FCEV according to the test result of our development components.