• Title/Summary/Keyword: Full bridge converter

Search Result 507, Processing Time 0.036 seconds

Application of Welding Machine Circuit of Full Bridge Converter using Circuit Averaging Method (회로평륜화기법을 이용한 풀 브리지 컨버터의 용접기 주회로 응용)

  • 구헌희;서기영;권순걸;이현우;김상돈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.327-334
    • /
    • 2000
  • In this paper, the circuit model using circuit averaging method for full bridge for full bridge converter is suggested. This model can represent the physical characteristics of converter circuits appropriately. At most of high capacity DC-DC converter application parts, full bridge converter is adapted for main circuit of power supply. Design and analysis of full bridge converter is no trouble with circuit model. The validity of circuit model is verified through computer simulation and practical welding experiment of welding machine with full bridge converted model.

  • PDF

A Study on Soft Switching of Single-Stage PFC AC/DC Full Bridge Converter (Single-Stage PFC AC/DC Full Bridge Converter의 소프트 스위칭에 관한 연구)

  • 임경내;성병기;계문호;권순재;김철우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.401-404
    • /
    • 1998
  • This paper proposes a new soft switching single stage AC/DC full bridge converter with unit power factor and isolated output. This circuit shows that it is possible to combine the boost converter which is for PFC(Power Factor Correction) and full bridge converter which is for DC/DC converter. A simple auxiliary circuit which includes neither lossy components nor active switches eliminates ringing of secondary side of the transformer. The characteristics of the proposed circuit are investigated and the validity is verified by the simulation results.

  • PDF

Improved Phase-shift Pulse-width Modulation Full-bridge Converter using a Blocking Capacitor (블로킹커패시터를 이용한 향상된 위상천이 펄스폭변조 풀브리지 컨버터)

  • Jeong, Gang-Youl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.20-29
    • /
    • 2011
  • This paper presents an improved phase-shift pulse-width modulation (PWM) full-bridge converter using a blocking capacitor. As the proposed converter reduces the circulation energy by inserting only one series blocking capacitor at the primary side of the conventional phase-shift PWM full-bridge converter structure, it improves the operation characteristics of the conventional converter. In this paper, first, the operation of conventional phase-shift PWM full-bridge converter is roughly reviewed, and then the operational principle of the proposed converter is classified and explained by each mode. After that, a prototype design example based on the operational principle is shown. Then, the improved operation characteristics of the proposed converter are actually verified through the experimental results.

Novel Hybrid Converter for the On-Board Charger of Electric Vehicle (전기자동차용 온보드 충전기를 위한 새로운 하이브리드 컨버터)

  • Vu, Hai-Nam;Tran, Dai-Duong;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.52-53
    • /
    • 2015
  • This paper introduces a novel hybrid converter combining a full-bridge soft switching converter and a full-bridge LLC converter. In this topology all the primary switches can achieve ZVS and ZCS all over the operation range. An additional switch and a diode are added in the secondary side of full-bridge converter to eliminate the circulating current and to provide a separate freewheeling path. The hybrid structure makes it possible to deliver the power to the secondary all the time of operation, thereby improving the efficiency. The proposed topology is suitable for the applications such as on-board chargers for electric vehicles and high power dc-dc converters. A 6.6-kW prototype converter was implemented and 97.5% efficiency was obtained through the experiments.

  • PDF

Fuel Cell Generation System Combined Interleaved Full-bridge Converter with Half-bridge Inverter (인터리브드 풀브릿지 컨버터와 하프브릿지 인버터를 결합한 연료전지 발전 시스템)

  • Kim, Heon-Hee;Lee, Hee-Jun;Shin, Soo-Chul;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.518-519
    • /
    • 2012
  • This paper suggested a fuel cell generation system which combined interleaved full-bridge converter with half-bridge inverter. High ratio step-up converter is essential to use the power as general voltage source. Full-bridge converter has high efficiency and can boost the input voltage to high output with transformer. With series connected capacitors, interleaved full-bridge converter and half-bridge inverter are combined. Half-bridge inverter has two fewer switches compared to full-bridge type. Also, switching loss can be reduced. The performance is verified through simulation with 1.5[kW] fuel cell generation system.

  • PDF

Novel ZVS Switching Method of Full-bridge Converter (Full-bridge Converter의 새로운 ZVS 스위칭 기법)

  • Kim, Seung-Ryong;Sun, Han-Geol;Han, Man-Seung;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.477-483
    • /
    • 2011
  • Existing switching system that is one of the ways which are used for DC/DC power converter is classified to hard-switching system and resonant-soft-switching system, generally. Hard-switching system is inefficient because the power loss of the switching element is large when it is been to trun on or turn off. And resonant-soft-switching system have the defect that need to add the another reactor and capacitor that make it expensive and huge. This paper suggest the ZVS Full-Bridge power converter contrcution of novel switching system for the overcoming these shortcomings. In Suggested soft-switching system, the front of buck converter at diode current, switch is changing on and off at the part of full-bridge converter's zero voltage part. as the result that is possible to be ZVS excepting the reactor and capacitor. also to verify the reasonability of the isolated ZVS full-bridge DC/DC converter as previously suggested, we produced the 500[W] level DC/DC converter and enforced the simulation for Psim, and then it able to conform the superiority of the DC/DC converter's efficient.

Electronic Ballast Design Driven by Low Frequency Square Wave for High Power MHL (고출력 MHL용 구형저주파 구동 방식의 전자식 안정기 설계)

  • Kim, Ki-Nam;Park, Jong-Yun;Choi, Young-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.394-400
    • /
    • 2010
  • In this paper, We proposed electronic ballast that applys Buck Converter operation principle to Full-Bridge inverter. The proposed ballast consists of an EMI Filter, a full-bridge rectifier, a passive power factor correction (PFC) circuit and a full-bridge inverter. The passive PFC is used and a Full-Bridge inverter operation by two frequency. High Side and Low Side switch was driven by high frequency and low frequency and realized buck Converter's operation. The lamp is driven by Low Frequency square wave to avoid Acoustic Resonance. Also, bulk of inductor is reduced by high frequency switching. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 700W MHL.

A PV-Module Integrated Phase Shift Full Bridge Converter for EV (태양광 모듈 통합 전기 자동차용 Phase Shift Full Bridge Converter)

  • Hwang, Yun-Kyung;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.425-432
    • /
    • 2020
  • The phase-shifted, full-bridge (PSFB) DC-DC converter is widely used in electric vehicles (EVs) to charge a low-voltage (12 V) battery from a high-voltage battery. A Photovoltaic (PV) module-integrated PSFB converter is proposed for the EV power conversion system. The converter is useful because solar energy can be utilized to extend the driving range. The buck converter circuit is simply realized by adding one switch to the conventional PSFB converter's secondary side. For the inductor and diode, the existing components in the PSFB converter are shared. The proposed converter can charge a low-voltage battery from the PV module with maximum power point tracking. In addition, the two power sources can be used simultaneously, and efficiency is increased by reducing the circulating current, which is a problem for the conventional PSFB converter.

High-Efficiency Full-Bridge DC-DC Converter with Current-Doubler Rectifier with Asymmetric Pulse-Width Modulation (비대칭 펄스 폭 변조 방식의 배전류 정류기 회로를 적용한 고효율 풀-브릿지 DC-DC 컨버터)

  • Yang, Min-Kwon;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.280-289
    • /
    • 2015
  • A high-efficiency full-bridge DC-DC converter with a current-doubler rectifier and an asymmetric pulse-width modulation is proposed. Through the asymmetric pulse-width modulation, the proposed converter achieves zero-voltage switching of power switches without the circulating currents. The proposed converter reduces the output current ripple through the current-doubler rectifier. A control strategy is suggested for the proposed converter to charge battery banks. A constant current and constant voltage charging is performed. The proposed converter achieved a higher efficiency compared with the conventional full-bridge DC-DC converter with a phase-shift modulation. The performance of the proposed converter is evaluated by the experimental results for a 1.0 kW prototype circuit.

Full-Bridge DC/DC Converter for NBI Filament Power Supply (NBI용 필라멘트 전원공급 장치를 위한 풀-브리지 DC/DC 컨버터)

  • Jun, Bum-Su;Lee, Se-Hyung;Lee, Hee-Jun;Sin, Soo-Cheol;Lee, Seung-Kyo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.32-39
    • /
    • 2011
  • FPS(Filament Power Supply), one of the KSTAR NBI(Neutral Beam Injections) is implemented by full-bridge DC/DC converter. NBI heating device for KSTAR(1.5MW) is developed for heating an ion source of plasma in KSTAR tokmak. The full-bridge DC/DC converter is applied to FPS for isolation with input and output. And FPS is operated with PWM control method which is the most usual method. In this paper, NBI FPS of 4.8kW is simulated by using the PSIM 6.0. And the full-bridge DC/DC converter using IGBTs is fabricated to demonstrate it. The processor DSP 28335 is implemented for digital control.