• Title/Summary/Keyword: Function-Network Matrix

Search Result 127, Processing Time 0.032 seconds

Neural Network Image Reconstruction for Magnetic Particle Imaging

  • Chae, Byung Gyu
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.841-850
    • /
    • 2017
  • We investigate neural network image reconstruction for magnetic particle imaging. The network performance strongly depends on the convolution effects of the spectrum input data. The larger convolution effect appearing at a relatively smaller nanoparticle size obstructs the network training. The trained single-layer network reveals the weighting matrix consisting of a basis vector in the form of Chebyshev polynomials of the second kind. The weighting matrix corresponds to an inverse system matrix, where an incoherency of basis vectors due to low convolution effects, as well as a nonlinear activation function, plays a key role in retrieving the matrix elements. Test images are well reconstructed through trained networks having an inverse kernel matrix. We also confirm that a multi-layer network with one hidden layer improves the performance. Based on the results, a neural network architecture overcoming the low incoherence of the inverse kernel through the classification property is expected to become a better tool for image reconstruction.

A Study on the Reliability Evaluation of Communication Networks by Matrix Transformation (행열변현에 의한 통신망의 신뢰도 계정에 관한 연구)

  • 김영근;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.5
    • /
    • pp.379-389
    • /
    • 1988
  • In this paper, an algorithm for obtaining 2-state switching failure function and a terminal pair reliability evaluation method in a communication network are proposed. The communication network is modeled by a graph. By using the sequence of matrix transformations for the graph, minimal cut-set matrix representing all minimal cut-sets which completely interrupt the communication path is determined and 2-state switching failure function is then obtained from the minimal cut-set matrix. The terminal pari reliability of the communication network is evaluated by corresponding the random variables to 2-state switching failure function. Illustrative examples are provided to demonstrate the algorithm. A computer program evaluating the terminal pair reliability in a complex and large network has also been developed.

  • PDF

Radial Basis Function Network Based Predictive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Kim, Se-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.606-613
    • /
    • 2003
  • As a technical method for controlling chaotic dynamics, this paper presents a predictive control for chaotic systems based on radial basis function networks(RBFNs). To control the chaotic systems, we employ an on-line identification unit and a nonlinear feedback controller, where the RBFN identifier is based on a suitable NARMA real-time modeling method and the controller is predictive control scheme. In our design method, the identifier and controller are most conveniently implemented using a gradient-descent procedure that represents a generalization of the least mean square(LMS) algorithm. Also, we introduce a projection matrix to determine the control input, which decreases the control performance function very rapidly. And the effectiveness and feasibility of the proposed control method is demonstrated with application to the continuous-time and discrete-time chaotic nonlinear system.

Study of Supply-Production-Distribution Routing in Supply Chain Network Using Matrix-based Genetic Algorithm (공급사슬네트워크에서 Matrix-based 유전알고리즘을 이용한 공급-생산-분배경로에 대한 연구)

  • Lim, Seok-Jin;Moon, Myung-Kug
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.4
    • /
    • pp.45-52
    • /
    • 2020
  • Recently, a multi facility, multi product and multi period industrial problem has been widely investigated in Supply Chain Network(SCN). One of keys issues in the current SCN research area involves minimizing both production and distribution costs. This study deals with finding an optimal solution for minimizing the total cost of production and distribution problems in supply chain network. First, we presented an integrated mathematical model that satisfies the minimum cost in the supply chain. To solve the presented mathematical model, we used a genetic algorithm with an excellent searching ability for complicated solution space. To represent the given model effectively, the matrix based real-number coding schema is used. The difference rate of the objective function value for the termination condition is applied. Computational experimental results show that the real size problems we encountered can be solved within a reasonable time.

Architecture Description Model for Common IT Resource Identification in e-Government Systems (공동활용자원식별을 위한 전자정부 시스템 아키텍처 서술 방안)

  • Shin, Soo-Jeong;Choi, Young-Jin;Jung, Suk-Chun;Seo, Yong-Won
    • The KIPS Transactions:PartD
    • /
    • v.16D no.4
    • /
    • pp.631-642
    • /
    • 2009
  • Although the Korean government is making great effort to prevent the redundancy in IT investment and efficiently allocate the IT budget, actual achievements are quite limited because of the variety of IT resources and different architecture description among organizations and projects. Thus, a standardized description model of the system architecture is strongly needed to identify the common resources and improve the efficiency of IT investment. Therefore, in this paper, we have developed the function-network matrix model which can be used as the basic template for a standard for architecture description of e-Government systems. The function-network matrix model integrates the function tiers and the network areas into a single unified framework, which enables the functionality of each component and the flow of information clearly visible. Moreover, we described the architectures of Korean e-government’s citizen service systems using our model, resulting in clear demonstration of the similarities and differences between different systems, and easy identification of the common resources. Using the architecture description model developed in this research, the consolidation of national IT resources can be promoted, and non-expert IT users can easily recognize the architecture of their systems. In addition, more efficient and systematic IT resource management can be achieved using our model.

Packet Output and Input Configuration in a Multicasting Session Using Network Coding

  • Marquez, Jose;Gutierrez, Ismael;Valle, Sebastian;Falco, Melanis
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.686-710
    • /
    • 2019
  • This work proposes a model to solve the problem of Network Coding over a one-session multicast network. The model is based on a system of restrictions that defines the packet flows received in the sink nodes as functions of the outgoing flows from the source node. A multicast network graph is used to derive a directed labeled line graph (DLLG). The successive powers of the DLLG adjacency matrix to the convergence in the null matrix permits the construction of the jump matrix Source-Sinks. In its reduced form, this shows the dependency of the incoming flows in the sink nodes as a function of the outgoing flows in the source node. The emerging packets for each outgoing link from the source node are marked with a tag that is a linear combination of variables that corresponds to powers of two. Restrictions are built based on the dependence of the outgoing and incoming flows and the packet tags as variables. The linear independence of the incoming flows to the sink nodes is mandatory. The method is novel because the solution is independent of the Galois field size where the packet contents are defined.

Intelligent Scheduling Control of Networked Control Systems with Networked-induced Delay and Packet Dropout

  • Li, Hongbo;Sun, Zengqi;Chen, Badong;Liu, Huaping;Sun, Fuchun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.915-927
    • /
    • 2008
  • Networked control systems(NCSs) have gained increasing attention in recent years due to their advantages and potential applications. The network Quality-of-Service(QoS) in NCSs always fluctuates due to changes of the traffic load and available network resources. To handle the network QoS variations problem, this paper presents an intelligent scheduling control method for NCSs, where the sampling period and the control parameters are simultaneously scheduled to compensate the effect of QoS variation on NCSs performance. For NCSs with network-induced delays and packet dropouts, a discrete-time switch model is proposed. By defining a sampling-period-dependent Lyapunov function and a common quadratic Lyapunov function, the stability conditions are derived for NCSs in terms of linear matrix inequalities(LMIs). Based on the obtained stability conditions, the corresponding controller design problem is solved and the performance optimization problem is also investigated. Simulation results are given to demonstrate the effectiveness of the proposed approaches.

POI Recommendation Method Based on Multi-Source Information Fusion Using Deep Learning in Location-Based Social Networks

  • Sun, Liqiang
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.352-368
    • /
    • 2021
  • Sign-in point of interest (POI) are extremely sparse in location-based social networks, hindering recommendation systems from capturing users' deep-level preferences. To solve this problem, we propose a content-aware POI recommendation algorithm based on a convolutional neural network. First, using convolutional neural networks to process comment text information, we model location POI and user latent factors. Subsequently, the objective function is constructed by fusing users' geographical information and obtaining the emotional category information. In addition, the objective function comprises matrix decomposition and maximisation of the probability objective function. Finally, we solve the objective function efficiently. The prediction rate and F1 value on the Instagram-NewYork dataset are 78.32% and 76.37%, respectively, and those on the Instagram-Chicago dataset are 85.16% and 83.29%, respectively. Comparative experiments show that the proposed method can obtain a higher precision rate than several other newer recommended methods.

Universal learning network-based fuzzy control

  • Hirasawa, K.;Wu, R.;Ohbayashi, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.436-439
    • /
    • 1995
  • In this paper we present a method to construct fuzzy model with multi-dimension input membership function, which can construct fuzzy inference system on one node of the network directly. This method comes from a common framework called Universal Learning Network (ULN). The fuzzy model under the framework of ULN is called Universal Learning Network-based Fuzzy Inference System (ULNFIS), which possesses certain advantages over other networks such as neural network. We also introduce how to imitate a real system with ULN and a control scheme using ULNFIS.

  • PDF

A Mechanism for Configurable Network Service Chaining and Its Implementation

  • Xiong, Gang;Hu, Yuxiang;Lan, Julong;Cheng, Guozhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3701-3727
    • /
    • 2016
  • Recently Service Function Chaining (SFC) is promising to innovate the network service mode in modern networks. However, a feasible implementation of SFC is still difficult due to the need to achieve functional equivalence with traditional modes without sacrificing performance or increasing network complexity. In this paper, we present a configurable network service chaining (CNSC) mechanism to provide services for network traffics in a flexible and optimal way. Firstly, we formulate the problem of network service chaining and design an effective service chain construction framework based on integrating software-defined networking (SDN) with network functions virtualization (NFV). Then, we model the service path computation problem as an integer liner optimization problem and propose an algorithm named SPCM to cooperatively combine service function instances with a network utility maximum policy. In the procedure of SPCM, we achieve the service node mapping by defining a service capacity matrix for substrate nodes, and work out the optimal link mapping policies with segment routing. Finally, the simulation results indicate that the average request acceptance ratio and resources utilization ratio can reach above 85% and 75% by our SPCM algorithm, respectively. Upon the prototype system, it is demonstrated that CNSC outperforms other approaches and can provide flexible and scalable network services.