• Title/Summary/Keyword: Functional MRI

Search Result 403, Processing Time 0.022 seconds

The Feasibility for Whole-Night Sleep Brain Network Research Using Synchronous EEG-fMRI (수면 뇌파-기능자기공명영상 동기화 측정과 신호처리 기법을 통한 수면 단계별 뇌연결망 연구)

  • Kim, Joong Il;Park, Bumhee;Youn, Tak;Park, Hae-Jeong
    • Sleep Medicine and Psychophysiology
    • /
    • v.25 no.2
    • /
    • pp.82-91
    • /
    • 2018
  • Objectives: Synchronous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) has been used to explore sleep stage dependent functional brain networks. Despite a growing number of sleep studies using EEG-fMRI, few studies have conducted network analysis on whole night sleep due to difficulty in data acquisition, artifacts, and sleep management within the MRI scanner. Methods: In order to perform network analysis for whole night sleep, we proposed experimental procedures and data processing techniques for EEG-fMRI. We acquired 6-7 hours of EEG-fMRI data per participant and conducted signal processing to reduce artifacts in both EEG and fMRI. We then generated a functional brain atlas with 68 brain regions using independent component analysis of sleep fMRI data. Using this functional atlas, we constructed sleep level dependent functional brain networks. Results: When we evaluated functional connectivity distribution, sleep showed significantly reduced functional connectivity for the whole brain compared to that during wakefulness. REM sleep showed statistically different connectivity patterns compared to non-REM sleep in sleep-related subcortical brain circuits. Conclusion: This study suggests the feasibility of exploring functional brain networks using sleep EEG-fMRI for whole night sleep via appropriate experimental procedures and signal processing techniques for fMRI and EEG.

Neuroactivation studies using Functional Brain MRI (기능적 자기공명영상을 이용한 뇌활성화 연구)

  • Chung, Kyung-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • Functional MRI (fMRI) provides an indirect mapping of cerebral activity, based on the detection of the local blood flow and oxygenation changes following neuronal activity (Blood Oxygenation Level Dependent). fMRI allows us to study noninvasively the normal and pathological aspects of functional cortical organization. Each fMRI study compares two different states of activity. Echo-Planar Imaging is the technique that makes it possible to study the whole brain at a rapid pace. Activation maps are calculated from a statistical analysis of the local signal changes. fMRI is now becoming an essential tool in the neurofunctional evaluation of normal volunteers and many neurological patients as well as the reference method to image normal or pathologic functional brain organization.

Functional Magnetic Resonance Imaging with Arterial Spin Labeling: Techniques and Potential Clinical and Research Applications

  • Kim, Ju Ho;Choi, Dae Seob;Park, Sung Eun;Choi, Ho Cheol;Kim, Seong Hu
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.2
    • /
    • pp.91-96
    • /
    • 2017
  • Purpose: To describe technical methods for functional magnetic resonance imaging (fMRI) study with arterial spin labeling (ASL) compared to blood oxygenation level-dependent (BOLD) technique and discuss the potential of ASL for research and clinical practice. Materials and Methods: Task-based (n = 1) and resting-state fMRI (rs-fMRI) (n = 20) were performed using ASL and BOLD techniques. Results of both techniques were compared. Results: For task-based fMRI with finger-tapping, the primary motor cortex of the contralateral frontal lobe and the ipsilateral cerebellum were activated by both BOLD and ASL fMRI. For rs-fMRI of sensorimotor network, functional connectivity showed similar results between BOLD and ASL. Conclusion: ASL technique has potential application in clinical and research fields because all brain perfusion imaging, CBF measurement, and rs-fMRI study can be performed in a single acquisition.

Outcome Evaluation with Signal Activation of Functional MRI in Spinal Cord Injury

  • Jung, Jong-Kwon;Oh, Chang-Hyun;Yoon, Seung-Hwan;Ha, Yoon;Park, So-Ra;Choi, Byung-Hyune
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.3
    • /
    • pp.209-215
    • /
    • 2011
  • Objective : The authors investigated the changes of cortical sensorimotor activity in functional MRI (fMRI) and functional recovery in spinal cord injury (SCI) patients who had been treated by bone marrow cell transplantation. Methods : Nineteen patients with SCI were included in this study; ten patients with clinical improvement and nine without. The cortical sensorimotor activations were studied using the proprioceptive stimulation during the fMRI. Results : Diagnostic accuracy of fMRI with neurological improvement was 70.0% and 44.4% for sensitivity and specificity, respectively. Signal activation in the ipsilateral motor cortex in fMRI was commonly observed in the clinically neurological improved group (p-value=0.002). Signal activation in the contralateral temporal lobe and basal ganglia was more commonly found in the neurological unimproved group (p-value<0.001). Signal activation in other locations was not statistically different. Conclusion : In patients with SCI, activation patterns of fMRI between patients with neurologic recovery and those without varied. Such plasticity should be considered in evaluating SCI interventions based on behavioral and neurological measurements.

Alteration of Functional Connectivity in OCD by Resting State fMRI

  • Kim, Seungho;Lee, Sang Won;Lee, Seung Jae;Chang, Yongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.583-592
    • /
    • 2021
  • Obsessive-compulsive disorder (OCD) is a mental disorder in which a person repeated a particular thought or feels. The domain of beliefs and guilt predicted OCD symptoms. Although there were some neuroimaging studies investigating OCD symptoms, resting-state functional magnetic resonance imaging (rs-fMRI) study investigating intra-network functional connectivity associated with guilt for OCD is not reported yet. Therefore, in the current study, we assessed the differences between intra-network functional connectivity of healthy control group and OCD group using independent component analysis (ICA) method. In addition, we also aimed to investigate the correlation between changed functional connectivity and guilt score in OCD. Total 86 participants, which consisted of 42 healthy control volunteers and 44 OCD patients, acquired rs-fMRI data using the 3T MRI. After preprocessing the fMRI data, a functional connectivity was used for group independent component analysis. The results showed that OCD patients had higher score in emotion state in beliefs and lower functional connectivity in fronto-parietal network (FPN) than control group. A decrease of functional connectivity in FPN was negatively correlated with feelings of guilt in OCD. Our results suggest excessive increase in guilt negatively affect to process emotional state and behavior or cognitive processing by influencing intrinsic brain activity.

Brain Mapping Using Neuroimaging

  • Tae, Woo-Suk;Kang, Shin-Hyuk;Ham, Byung-Joo;Kim, Byung-Jo;Pyun, Sung-Bom
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.179-183
    • /
    • 2016
  • Mapping brain structural and functional connections through the whole brain is essential for understanding brain mechanisms and the physiological bases of brain diseases. Although region specific structural or functional deficits cause brain diseases, the changes of interregional connections could also be important factors of brain diseases. This review will introduce common neuroimaging modalities, including structural magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging, and other recent neuroimaging analyses methods, such as voxel-based morphometry, cortical thickness analysis, local gyrification index, and shape analysis for structural imaging. Tract-Based Spatial Statistics, TRActs Constrained by UnderLying Anatomy for diffusion MRI, and independent component analysis for fMRI also will also be introduced.

Temporal Evolution of a Chronic Expanding Organizing Hematoma on MRI, Including Functional MR Imaging Techniques: a Case Report

  • Lee, Jeonghyun;Lee, Taebum;Oh, Eunsun;Yoon, Young Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • Chronic expanding organizing hematoma (CEH) occasionally mimics a soft tissue tumor on MRI, which becomes more problematic in patients with a history of surgical resection for musculoskeletal malignancy. Herein, we present a case of CEH which we were able to differentiate from recurrent tumor through MRI follow-up, including diffusion-weighted imaging (DWI) and dynamic contrast enhanced (DCE) imaging. A 66-year-old male visited our institution under suspicion of recurrent leiomyosarcoma of the thigh, 19 months after surgery and radiation therapy. Due to inconclusive results, three US-guided biopsies and 6 MRI examinations were performed over 2 years. In the end, we could diagnose a CEH using conventional and functional MRI techniques, and it was histopathologically confirmed after surgical resection. A CEH may occur remotely after an initiating event, and it may persist and expand over several years. Functional MR sequences, in addition to conventional sequences, are helpful in differentiating CEH from malignant neoplasms.

A Review on Brain Study Methods in Elementary Science Education - A Focus on the fMRl Method - (초등 과학 교육에서 두뇌 연구 방법의 고찰 - fMRI 활용법을 중심으로 -)

  • Shin, Dong-Hoon;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.1
    • /
    • pp.49-62
    • /
    • 2007
  • The higher cognitive functions of the human brain including teaming are hypothesized to be selectively distributed across large-scale neural networks interconnected to the cortical and subcortical areas. Recently, advances in functional imaging have made it possible to visualize the brain areas activated by certain cognitive activities in vivo. Neural substrates for teaming and motivation have also begun to be revealed. Functional magnetic resonance imaging (fMRI) provides a non-invasive indirect mapping of cerebral activity, based on the blood- oxygen level dependent (BOLD) contrast which is based on the localized hemodynamic changes following neural activities in certain areas of the brain. The fMRI method is now becoming an essential tool used to define the neuro-functional mechanisms of higher brain functions such as memory, language, attention, learning, plasticity and emotion. Further research in the field of education will accelerate the verification of the effects on loaming or help in the selection of model teaching strategies. Thus, the purpose of this study was to review brain study methods using fMRI in science education. In conclusion, a number of possible strategies using fMRI for the study of elementary science education were suggested.

  • PDF

Combined Analysis Using Functional Connectivity of Default Mode Network Based on Independent Component Analysis of Resting State fMRI and Structural Connectivity Using Diffusion Tensor Imaging Tractography (휴지기 기능적 자기공명영상의 독립성분분석기법 기반 내정상태 네트워크 기능 연결성과 확산텐서영상의 트랙토그래피 기법을 이용한 구조 연결성의 통합적 분석)

  • Choi, Hyejeong;Chang, Yongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.684-694
    • /
    • 2021
  • Resting-state Functional Magnetic Resonance Imaging(fMRI) data detects the temporal correlations in Blood Oxygen Level Dependent(BOLD) signal and these temporal correlations are regarded to reflect intrinsic cortical connectivity, which is deactivated during attention demanding, non-self referential tasks, called Default Mode Network(DMN). The relationship between fMRI and anatomical connectivity has not been studied in detail, however, the preceded studies have tried to clarify this relationship using Diffusion Tensor Imaging(DTI) and fMRI. These studies use method that fMRI data assists DTI data or vice versa and it is used as guider to perform DTI tractography on the brain image. In this study, we hypothesized that functional connectivity in resting state would reflect anatomical connectivity of DMN and the combined images include information of fMRI and DTI showed visible connection between brain regions related in DMN. In the previous study, functional connectivity was determined by subjective region of interest method. However, in this study, functional connectivity was determined by objective and advanced method through Independent Component Analysis. There was a stronger connection between Posterior Congulate Cortex(PCC) and PHG(Parahippocampa Gyrus) than Anterior Cingulate Cortex(ACC) and PCC. This technique might be used in several clinical field and will be the basis for future studies related to aging and the brain diseases, which are needed to be translated not only functional connectivity, but structural connectivity.

The Ability of Muscle Functional MRI to Detect the Slight Effect of Exercise on Trunk Muscle Activity

  • Tawara, Noriyuki
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2022
  • Purpose: In this study, we provide a way to assess even a slight effect of exercise on trunk-muscle activity. Materials and Methods: Seven healthy male participants (mean age, 24.7 ± 3.2 years; height, 171.2 ± 9.8 cm; and weight, 63.8 ± 11.9 kg) performed 15 sets of an exercise with 20 repetitions of 90° hip and right-knee flexion while lying supine. The exercise intensity was measured using the 10-point Rating of Perceived Exertion Scale after the first and 15th sets of exercises. Although cross-sectional areas and functional T2 mapping using ultrafast imaging (fast-acquired muscle functional magnetic resonance imaging, fast-mfMRI) have been proposed for imaging to evaluate exercise-induced muscle activity in real time, no previous studies have reported on the evaluation of trunk-muscle activity using functional T2 mapping. As a method for assessing trunk-muscle activity, we compared functional T2 mapping using ultrafast imaging (fast-mfMRI) with cross-sectional areas. Results: Although the muscle cross-sectional areas were increased by the exercise, there was no significant difference at rest. On the other hand, for all sets, the changes in T2 were significant compared with those at rest (P < 0.01). These results demonstrate that T2, calculated from fast-mfMRI images can be used to detect even a small amount of muscle activity induced by acute exercise, which was impossible to do with cross-sectional areas. Conclusion: Fast-mfMRI, which can also display functional information with detailed forms, enabled non-invasive real-time imaging for identifying and evaluating the degree of deep trunk-muscle activity induced by exercise.