• Title/Summary/Keyword: Functional MRI

Search Result 403, Processing Time 0.031 seconds

Advanced neuroimaging techniques for evaluating pediatric epilepsy

  • Lee, Yun Jeong
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.3
    • /
    • pp.88-95
    • /
    • 2020
  • Accurate localization of the seizure onset zone is important for better seizure outcomes and preventing deficits following epilepsy surgery. Recent advances in neuroimaging techniques have increased our understanding of the underlying etiology and improved our ability to noninvasively identify the seizure onset zone. Using epilepsy-specific magnetic resonance imaging (MRI) protocols, structural MRI allows better detection of the seizure onset zone, particularly when it is interpreted by experienced neuroradiologists. Ultra-high-field imaging and postprocessing analysis with automated machine learning algorithms can detect subtle structural abnormalities in MRI-negative patients. Tractography derived from diffusion tensor imaging can delineate white matter connections associated with epilepsy or eloquent function, thus, preventing deficits after epilepsy surgery. Arterial spin-labeling perfusion MRI, simultaneous electroencephalography (EEG)-functional MRI (fMRI), and magnetoencephalography (MEG) are noinvasive imaging modalities that can be used to localize the epileptogenic foci and assist in planning epilepsy surgery with positron emission tomography, ictal single-photon emission computed tomography, and intracranial EEG monitoring. MEG and fMRI can localize and lateralize the area of the cortex that is essential for language, motor, and memory function and identify its relationship with planned surgical resection sites to reduce the risk of neurological impairments. These advanced structural and functional imaging modalities can be combined with postprocessing methods to better understand the epileptic network and obtain valuable clinical information for predicting long-term outcomes in pediatric epilepsy.

Visual recovery demonstrated by functional MRI and diffusion tensor tractography in bilateral occipital lobe infarction

  • Seo, Jeong Pyo;Jang, Sung Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.31 no.2
    • /
    • pp.152-156
    • /
    • 2014
  • We report on a patient who showed visual recovery following bilateral occipital lobe infarct, as evaluated by follow up functional magnetic resonance imaging (fMRI) and diffusion tensor tractography (DTT). A 56-year-old female patient exhibited severe visual impairment since onset of the cerebral infarct in the bilateral occipital lobes. The patient complained that she could not see anything, although the central part of the visual field remained dimly at 1 week after onset. However, her visual function has shown improvement with time. As a result, at 5 weeks after onset, she notified that her visual field and visual acuity had improved. fMRI and DTT were acquired at 1 week and 4 weeks after onset, using a 1.5-T Philips Gyroscan Intera. The fiber number of left optic radiation (OR) increased from 257 (1-week) to 353 (4-week), although the fiber numbers for right OR were similar. No activation in the occipital lobe was observed on 1-week fMRI. By contrast, activation of the visual cortex, including the bilateral primary visual cortex, was observed on 4-week fMRI. We demonstrated visual recovery in this patient in terms of the changes observed on DTT and fMRI. It appears that the recovery of the left OR was attributed more to resolution of local factors, such as peri-infarct edema, than brain plasticity.

Brain-wave Analysis using fMRI, TRS and EEG for Human Emotion Recognition (fMRI와 TRS와 EEG 를 이용한 뇌파분석을 통한 사람의 감정 인식)

  • Kim, Ho-Duck;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.7-10
    • /
    • 2007
  • 많은 과학자들은 인간의 사고를 functional Magnetic Resonance Imaging (fMRI), Time Resolved Spectroscopy(TRS), Electroencephalography(EEG)등을 이용해서 두뇌 활동 영역을 연구하고 있다. 주로 의학 분야와 심리학의 영역에서 두뇌의 활동을 연구하여 간질이나 발작을 알아내고 거짓말 탐지 분야에서도 사용된다. 본 논문에서는 사람의 두뇌활동을 측정하여 인간의 감정을 인식하는 연구에 중점을 두었다. 특히 fMRI와 TRS 그리고 EEG를 이용해서 사람의 두뇌활동을 측정하는 연구를 하였다. 많은 연구자들이 한 가지 측정 장치만을 사용하여서 측정하거나 fMRI와 EEG를 동시에 측정하는 연구를 진행하고 있다. 현재에는 단순히 두뇌의 활동을 측정하거나 측정시 발생하는 잡음들을 제거하는 연구들에 중점을 두고 진행되고 있다. 본 연구에서는 fMRI와 TRS를 동시에 측정하여 얻은 두뇌 활동 데이터를 가지고 감정에 따른 활동영역의 EEG신호를 측정하였다. EEG 신호분석에 있어서 기존의 뇌파만을 가지고 특정을 찾아내는 것을 넘어서 각각의 채널에서 기록되는 뇌파의 파형을 주파수에 따라서 분류하고 정확한 측정을 위해 낮은 주파수를 제거하고 연구자가 필요한 부분의 뇌파를 분석하였다.

  • PDF

Brain-wave Analysis using fMRI, TRS and EEG for Human Emotion Recognition (fMRI와 TRS와 EEG를 이용한 뇌파분석을 통한 사람의 감정인식)

  • Kim, Ho-Duck;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.832-837
    • /
    • 2007
  • Many researchers are studying brain activity to using functional Magnetic Resonance Imaging (fMRI), Time Resolved Spectroscopy(TRS), Electroencephalography(EEG), and etc. They are used detection of seizures or epilepsy and deception detection in the main. In this paper, we focus on emotion recognition by recording brain waves. We specially use fMRI, TRS, and EEG for measuring brain activity Researchers are experimenting brain waves to get only a measuring apparatus or to use both fMRI and EEG. This paper is measured that we take images of fMRI and TRS about brain activity as human emotions and then we take data of EEG signals. Especially, we focus on EEG signals analysis. We analyze not only original features in brain waves but also transferred features to classify into five sections as frequency. And we eliminate low frequency from 0.2 to 4Hz for EEG artifacts elimination.

Brain Activation Evoked by Sensory Stimulation in Patients with Spinal Cord Injury : Functional Magnetic Resonance Imaging Correlations with Clinical Features

  • Lee, Jun Ki;Oh, Chang Hyun;Kim, Ji Yong;Park, Hyung-Chun;Yoon, Seung Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.3
    • /
    • pp.242-247
    • /
    • 2015
  • Objective : The purpose of this study is to determine whether the changes of contralateral sensorimotor cortical activation on functional magnetic resonance imaging (fMRI) can predict the neurological outcome among spinal cord injury (SCI) patients when the great toes are stimulated without notice. Methods : This study enrolled a total of 49 patients with SCI and investigated each patient's preoperative fMRI, postoperative fMRI, American Spinal Injury Association (ASIA) score, and neuropathic pain occurrence. Patients were classified into 3 groups according to the change of blood oxygenation level dependent (BOLD) response on perioperative fMRI during proprioceptive stimulation with repetitive passive toe movements : 1) patients with a response of contralateral sensorimotor cortical activation in fMRI were categorized; 2) patients with a response in other regions; and 3) patients with no response. Correlation between the result of fMRI and each parameter was analyzed. Results : In fMRI data, ASIA score was likely to show greater improvement in patients in group A compared to those belonging to group B or C (p<0.001). No statistical significance was observed between the result of fMRI and neuropathic pain (p=0.709). However, increase in neuropathic pain in response to the signal change of the ipsilateral frontal lobe on fMRI was statistically significant (p=0.030). Conclusion : When there was change of BOLD response at the contralateral sensorimotor cortex on perioperative fMRI after surgery, relief of neurological symptoms was highly likely for traumatic SCI patients. In addition, development of neuropathic pain was likely to occur when there was change of BOLD response at ipsilateral frontal lobe.

Cortical Activation of the Somatosensory Hand Area in Hemiplegic Cerebral Palsy Patients. : fMRI Study. -Case Reports- (뇌성마비 편마비 환아의 체성감각피질 활성화에 대한 fMRI 연구 -증례 보고-)

  • Lee, Zee Ihn
    • Annals of Clinical Neurophysiology
    • /
    • v.7 no.1
    • /
    • pp.34-36
    • /
    • 2005
  • Two hemiplegic cerebral palsy patients were studied to investigate the cortical mechanisms underlying preserved somatosensory capacity, using functional MRI(fMRI). Tactile stimulation was performed by brushing of palm, during fMRI study. By the affected hand stimulation, contralateral primary somatosensory cortex was activated in patient 1 and cortical area anterior to the lesion site was activated in patient 2. We suggest that reorganization of the somatosensory cortex after brain injury can be induced by recruitment of undamaged areas adjacent to lesion site.

  • PDF

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Statistical methods for modelling functional neuro-connectivity (뇌기능 연결성 모델링을 위한 통계적 방법)

  • Kim, Sung-Ho;Park, Chang-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1129-1145
    • /
    • 2016
  • Functional neuro-connectivity is one of the main issues in brain science in the sense that it is closely related to neurodynamics in the brain. In the paper, we choose fMRI as a main form of response data to brain activity due to its high resolution. We review methods for analyzing functional neuro-connectivity assuming that measurements are made on physiological responses to neuron activation. This means that we deal with a state-space and measurement model, where the state-space model is assumed to represent neurodynamics. Analysis methods and their interpretation should vary subject to what was measured. We included analysis results of real fMRI data by applying a high-dimensional autoregressive model, which indicated that different neurodynamics were required for solving different types of geometric problems.

Brain Alpha Rhythm Component in fMRI and EEG

  • Jeong Jeong-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.223-230
    • /
    • 2005
  • This paper presents a new approach to investigate spatial correlation between independent components of brain alpha activity in functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). To avoid potential problems of simultaneous fMRI and EEG acquisitions in imaging pure alpha activity, data from each modality were acquired separately under a 'three conditions' setup where one of the conditions involved closing eyes and relaxing, thus making it conducive to generation of alpha activity. The other two conditions -- eyes open in a lighted room or engaged in a mental arithmetic task, were designed to attenuate alpha activity. Using a Mixture Density Independent Component Analysis (MD-ICA) that incorporates flexible non-linearity functions into the conventional ICA framework, we could identify the spatiotemporal components of fMRI activations and EEG activities associated with the alpha rhythm. Then, the sources of the individual EEG alpha activity component were localized by a Maximum Entropy (ME) method that is specially designed to find the most probable dipole distribution minimizing the localization error in sense of LMSE. The resulting active dipoles were spatially transformed to 3D MRls of the subject and compared to fMRI alpha activity maps. A good spatial correlation was found in the spatial distribution of alpha sources derived independently from fMRI and EEG, suggesting the proposed method can localize the cortical areas responsible for generating alpha activity successfully in either fMRI or EEG. Finally a functional connectivity analysis was applied to show that alpha activity sources of both modalities were also functionally connected to each other, implying that they are involved in performing a common function: 'the generation of alpha rhythms'.