• Title/Summary/Keyword: Functional MRI

Search Result 403, Processing Time 0.027 seconds

MRI Content-Adaptive Finite Element Mesh Generation Toolbox

  • Lee W.H.;Kim T.S.;Cho M.H.;Lee S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.110-116
    • /
    • 2006
  • Finite element method (FEM) provides several advantages over other numerical methods such as boundary element method, since it allows truly volumetric analysis and incorporation of realistic electrical conductivity values. Finite element mesh generation is the first requirement in such in FEM to represent the volumetric domain of interest with numerous finite elements accurately. However, conventional mesh generators and approaches offered by commercial packages do not generate meshes that are content-adaptive to the contents of given images. In this paper, we present software that has been implemented to generate content-adaptive finite element meshes (cMESHes) based on the contents of MR images. The software offers various computational tools for cMESH generation from multi-slice MR images. The software named as the Content-adaptive FE Mesh Generation Toolbox runs under the commercially available technical computation software called Matlab. The major routines in the toolbox include anisotropic filtering of MR images, feature map generation, content-adaptive node generation, Delaunay tessellation, and MRI segmentation for the head conductivity modeling. The presented tools should be useful to researchers who wish to generate efficient mesh models from a set of MR images. The toolbox is available upon request made to the Functional and Metabolic Imaging Center or Bio-imaging Laboratory at Kyung Hee University in Korea.

Change of activation of the supplementary motor area in motor learning: an fMRI case study (운동학습에 따른 대뇌 보조운동영역의 활성화 변화: fMRI 사례연구)

  • Park, Min-Chull;Bae, Sung-Soo;Lee, Mi-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.85-90
    • /
    • 2011
  • Purpose: The contribution of the supplementary motor area (SMA) to the control of voluntary movement has been revealed. We investigated the changesin the SMA for motor learning of the reaching movement in stroke patient using functional MRI. Methods: The subject was a right-handed 55 year-old woman with left hemiparesis due to an intracerebral hemorrhage. She performed reaching movement during fMRI scanning before and after reaching training in four weeks. The motor assessment scale and surface EMG were used to evaluate the paretic upper limb function and muscle activation. Results: In the fMRI result, contralateral primary sensorimotor cortex (SM1) was activated before and after training. SMA was only activated after training. In addition, muscle activation of the paretic upper limb was similar to that of the unaffected upper limb after training. Conclusion: These findings suggest SMA is related to the execution of a novel movement pattern resulting in motor learning in stroke patients.

Observation of Susceptibility Change in fMRI Using SSFP Interferometry (SSFPI) Technique (핵자기 뇌기능 영상에서 SSFPI 기법을 이용한 자화율효과의 관찰)

  • Chung, J.Y.;Chung, S.C.;Ro, Y.M.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.173-176
    • /
    • 1995
  • We have developed a fast steady state free precession interferometry (SSFPI) technique which is useful for the fMRI (functional Magnetic Resonance Imaging). As is known, SSFP sequence with a suitable adjustment of gradient (readout) allows us to measure precession angle $\theta$ which is in turn related to the field inhomogeneity [1-3]. When the method is applied to the susceptibility effect based functional magnetic resonance imaging (fMRI), it was found that the direct susceptibility effect measurement was possible without perturbations such as the backgrounds and inflow effect. In this paper, simulation results and experimental results obtained with 2.0 Tesla MRI system are also presented.

  • PDF

Classification of Cognitive States from fMRI data using Fisher Discriminant Ratio and Regions of Interest

  • Do, Luu Ngoc;Yang, Hyung Jeong
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.56-63
    • /
    • 2012
  • In recent decades, analyzing the activities of human brain achieved some accomplishments by using the functional Magnetic Resonance Imaging (fMRI) technique. fMRI data provide a sequence of three-dimensional images related to human brain's activity which can be used to detect instantaneous cognitive states by applying machine learning methods. In this paper, we propose a new approach for distinguishing human's cognitive states such as "observing a picture" versus "reading a sentence" and "reading an affirmative sentence" versus "reading a negative sentence". Since fMRI data are high dimensional (about 100,000 features in each sample), extremely sparse and noisy, feature selection is a very important step for increasing classification accuracy and reducing processing time. We used the Fisher Discriminant Ratio to select the most powerful discriminative features from some Regions of Interest (ROIs). The experimental results showed that our approach achieved the best performance compared to other feature extraction methods with the average accuracy approximately 95.83% for the first study and 99.5% for the second study.

Acupuncture Stimulation for Motor Cortex Activities: Evidence from 3T Functional MRI Study

  • Choe, Bo-Young;Jeun, Sin-Soo;Kang, Sei-Kown;Park, Gi-Soon;Chung, Sung-Taek;Yoo, Seung-Schik;Chu, Myung-Ja;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.352-355
    • /
    • 2002
  • The purpose of this study was to investigate whether or not acupuncture of GB34 produces a significant response of the modulation of somatomotor areas by functional magnetic resonance imaging (fMRI) study. The acupoint, GB34, located in the back of the knee, is known to be effective in recovering motor function after stroke. Using 3T MRI scanner, functional MR imaging of the whole brain was performed in 12 normal healthy subjects during two stimulation paradigms; acupuncture manipulation on GB 34 and sham points. This study investigates the activation of the mortor cortex elicited by a soft and an intensified stimulation of GB 34. Three different paradigms were carried out to detect any possible modulation of the Blood Oxygenation Level Dependent (BOLD) response in the somatomortor area to motor stimulation through acupuncture. Group analysis from seven individuals showed that bilateral sensorimotor areas (BA 3,4,6 and 7) showed stimulation related BOLD signal contrast of approximately 6% whereas very few areas were activated when sham stimulation is given. The present study shows that acupuncture fMRI study can be safely conducted in 3T MRI environment, and acupuncture stimulation in GB34 modulates the cortical activities of the somatomotor area in human. The present findings may shed light on the CNS mechanism of motor function by acupuncture and form a basis for future investigations of motor modulation circuits in the stroke patients.

  • PDF

Muscle Functional MRI of Exercise-Induced Rotator Cuff Muscles

  • Tawara, Noriyuki;Nishiyama, Atsushi
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • The aim of this study was to provide a new assessment of rotator cuff muscle activity. Eight male subjects (24.7 ± 3.2 years old,171.2 ± 9.8 cm tall, and weighing 63.8 ± 11.9 kg) performed the study exercises. The subjects performed 10 sets of the exercise while fixing the elbow at 90 degrees flexure and lying supine on a bed. One exercise set consisted of the subject performing external shoulder rotation 50 times using training equipment. Two imaging protocols were employed: (a) true fast imaging with steady precession (TrueFISP) at an acquisition time of 12 seconds and (b) multi-shot spin-echo echo-planar imaging (MSSE-EPI) at an acquisition time of 30 seconds for one echo. The main method of assessing rotator cuff muscle activity was functional T2 mapping using ultrafast imaging (fast-acquired muscle functional MRI [fast-mfMRI]). Fast-mfMRI enabled real-time imaging for the identification and evaluation of the degree of muscle activity induced by the exercise. Regions of interest were set at several places in the musculus subscapularis (sub), musculus supraspinatus (sup), musculus teres minor (ter), and deltoid muscle (del). We used the MR signal of the images and transverse relaxation time (T2) for comparison. Most of the TrueFISP signal was not changed by exercise and there was no significant difference from the resting values. Only the T2 in the musculus teres minor was increased after one set and the change were seen on the T2 images. Additionally, except for those after one and two sets, the changes in T2 were significant compared to those at rest (P < 0.01). We also demonstrated identify and visualize the extent to which muscles involved in muscle activity by exercise. In addition, we showed that muscle activity in a region such as a shoulder, which is susceptible to B0 inhomogeneity, could be easily detected using this technique.

Detecting Deception Using Neuroscience : A Review on Lie Detection Using Functional Magnetic Resonance Imaging (거짓 탐지와 뇌과학 : 기능적 자기공명영상을 활용한 거짓 탐지)

  • Choi, Yera;Kim, Sangjoon;Do, Hyein;Shin, Kyung-Shik;Kim, Jieun E.
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.3
    • /
    • pp.109-112
    • /
    • 2015
  • Since the early 2000s, there has been a continued interest in lie detection using functional magnetic resonance imaging (fMRI) in neuroscience and forensic sciences, as well as in newly emerging fields including neuroethics and neurolaw. Related fMRI studies have revealed converging evidence that brain regions including the prefrontal cortex, anterior cingulate cortex, parietal cortex, and anterior insula are associated with deceptive behavior. However, fMRI-based lie detection has thus far not been generally accepted as evidence in court, as methodological shortcomings, generalizability issues, and ethical and legal concerns are yet to be resolved. In the present review, we aim to illustrate these achievements and limitations of fMRI-based lie detection.

Usefulness of Functional MRI for the study of concentration sheet (Functional MRI를 이용한 학습집중력 향상 시트 개발)

  • Kim, Chang-Gyu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.13-17
    • /
    • 2009
  • In this thesis, we made a sheet to improve the concentration of study. To demonstrate the improvement in the concentration of study, we obtained functional magnetic resonance imaging (fMRI), which has superior time resolution and measures brain noninvasively by using intrinsic contrast agent. As a result of Brainwave measurement, we could verify the blood flow's activate in the nearby frontal lobe related to memory process and noticeable ratio change in absolute alpha wave and beta wave after the analysis of Brainwave measurement. fMRI ascertains the physiological function of the brain and is being used to prevent the trouble medically that can be caused before and after the operation. For the visibility of cranial nerve network, many researches will be carried out to develope the product which is related to brain like concentration of study.

  • PDF

Functional Magnetic Resonance Imaging in the Diagnosis of Locally Recurrent Prostate Cancer: Are All Pulse Sequences Helpful?

  • Liao, Xiao-Li;Wei, Jun-Bao;Li, Yong-Qiang;Zhong, Jian-Hong;Liao, Cheng-Cheng;Wei, Chang-Yuan
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1110-1118
    • /
    • 2018
  • Objective: To perform a meta-analysis to quantitatively assess functional magnetic resonance imaging (MRI) in the diagnosis of locally recurrent prostate cancer. Materials and Methods: A comprehensive search of the PubMed, Embase, Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews was conducted from January 1, 1995 to December 31, 2016. Diagnostic accuracy was quantitatively pooled for all studies by using hierarchical logistic regression modeling, including bivariate modeling and hierarchical summary receiver operating characteristic (HSROC) curves (AUCs). The Z test was used to determine whether adding functional MRI to T2-weighted imaging (T2WI) results in significantly increased diagnostic sensitivity and specificity. Results: Meta-analysis of 13 studies involving 826 patients who underwent radical prostatectomy showed a pooled sensitivity and specificity of 91%, and the AUC was 0.96. Meta-analysis of 7 studies involving 329 patients who underwent radiotherapy showed a pooled sensitivity of 80% and specificity of 81%, and the AUC was 0.88. Meta-analysis of 11 studies reporting 1669 sextant biopsies from patients who underwent radiotherapy showed a pooled sensitivity of 54% and specificity of 91%, and the AUC was 0.85. Sensitivity after radiotherapy was significantly higher when diffusion-weighted MRI data were combined with T2WI than when only T2WI results were used. This was true when meta-analysis was performed on a per-patient basis (p = 0.027) or per sextant biopsy (p = 0.046). A similar result was found when $^1H$-magnetic resonance spectroscopy ($^1H$-MRS) data were combined with T2WI and sextant biopsy was the unit of analysis (p = 0.036). Conclusion: Functional MRI data may not strengthen the ability of T2WI to detect locally recurrent prostate cancer in patients who have undergone radical prostatectomy. By contrast, diffusion-weight MRI and $^1H$-MRS data may improve the sensitivity of T2WI for patients who have undergone radiotherapy.

Accelerated Resting-State Functional Magnetic Resonance Imaging Using Multiband Echo-Planar Imaging with Controlled Aliasing

  • Seo, Hyung Suk;Jang, Kyung Eun;Wang, Dingxin;Kim, In Seong;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.223-232
    • /
    • 2017
  • Purpose: To report the use of multiband accelerated echo-planar imaging (EPI) for resting-state functional MRI (rs-fMRI) to achieve rapid high temporal resolution at 3T compared to conventional EPI. Materials and Methods: rs-fMRI data were acquired from 20 healthy right-handed volunteers by using three methods: conventional single-band gradient-echo EPI acquisition (Data 1), multiband gradient-echo EPI acquisition with 240 volumes (Data 2) and 480 volumes (Data 3). Temporal signal-to-noise ratio (tSNR) maps were obtained by dividing the mean of the time course of each voxel by its temporal standard deviation. The resting-state sensorimotor network (SMN) and default mode network (DMN) were estimated using independent component analysis (ICA) and a seed-based method. One-way analysis of variance (ANOVA) was performed between the tSNR map, SMN, and DMN from the three data sets for between-group analysis. P < 0.05 with a family-wise error (FWE) correction for multiple comparisons was considered statistically significant. Results: One-way ANOVA and post-hoc two-sample t-tests showed that the tSNR was higher in Data 1 than Data 2 and 3 in white matter structures such as the striatum and medial and superior longitudinal fasciculus. One-way ANOVA revealed no differences in SMN or DMN across the three data sets. Conclusion: Within the adapted metrics estimated under specific imaging conditions employed in this study, multiband accelerated EPI, which substantially reduced scan times, provides the same quality image of functional connectivity as rs-fMRI by using conventional EPI at 3T. Under employed imaging conditions, this technique shows strong potential for clinical acceptance and translation of rs-fMRI protocols with potential advantages in spatial and/or temporal resolution. However, further study is warranted to evaluate whether the current findings can be generalized in diverse settings.