• Title/Summary/Keyword: Functional brain mapping

Search Result 51, Processing Time 0.025 seconds

Brain Mapping Using Neuroimaging

  • Tae, Woo-Suk;Kang, Shin-Hyuk;Ham, Byung-Joo;Kim, Byung-Jo;Pyun, Sung-Bom
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.179-183
    • /
    • 2016
  • Mapping brain structural and functional connections through the whole brain is essential for understanding brain mechanisms and the physiological bases of brain diseases. Although region specific structural or functional deficits cause brain diseases, the changes of interregional connections could also be important factors of brain diseases. This review will introduce common neuroimaging modalities, including structural magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging, and other recent neuroimaging analyses methods, such as voxel-based morphometry, cortical thickness analysis, local gyrification index, and shape analysis for structural imaging. Tract-Based Spatial Statistics, TRActs Constrained by UnderLying Anatomy for diffusion MRI, and independent component analysis for fMRI also will also be introduced.

New approach of using cortico-cortical evoked potential for functional brain evaluation

  • Jo, Hyunjin;Kim, Dongyeop;Song, Jooyeon;Seo, Dae-Won
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.2
    • /
    • pp.69-81
    • /
    • 2021
  • Cortico-cortical evoked potential (CCEP) mapping is a rapidly developing method for visualizing the brain network and estimating cortical excitability. The CCEP comprises the early N1 component the occurs at 10-30 ms poststimulation, indicating anatomic connectivity, and the late N2 component that appears at < 200 ms poststimulation, suggesting long-lasting effective connectivity. A later component at 200-1,000 ms poststimulation can also appear as a delayed response in some studied areas. Such delayed responses occur in areas with changed excitability, such as an epileptogenic zone. CCEP mapping has been used to examine the brain connections causally in functional systems such as the language, auditory, and visual systems as well as in anatomic regions including the frontoparietal neocortices and hippocampal limbic areas. Task-based CCEPs can be used to measure behavior. In addition to evaluations of the brain connectome, single-pulse electrical stimulation (SPES) can reflect cortical excitability, and so it could be used to predict a seizure onset zone. CCEP brain mapping and SPES investigations could be applied both extraoperatively and intraoperatively. These underused electrophysiologic tools in basic and clinical neuroscience might be powerful methods for providing insight into measures of brain connectivity and dynamics. Analyses of CCEPs might enable us to identify causal relationships between brain areas during cortical processing, and to develop a new paradigm of effective therapeutic neuromodulation in the future.

Advances in Functional Connectomics in Neuroscience : A Focus on Post-Traumatic Stress Disorder (뇌과학 분야 기능적 연결체학의 발전 : 외상후스트레스장애를 중심으로)

  • Park, Shinwon;Jeong, Hyeonseok S.;Lyoo, In Kyoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.3
    • /
    • pp.101-108
    • /
    • 2015
  • Recent breakthroughs in functional neuroimaging techniques have launched the quest of mapping the connections of the human brain, otherwise known as the human connectome. Imaging connectomics is an umbrella term that refers to the neuroimaging techniques used to generate these maps, which recently has enabled comprehensive brain mapping of network connectivity combined with graph theoretic methods. In this review, we present an overview of the key concepts in functional connectomics. Furthermore, we discuss articles that applied task-based and/or resting-state functional magnetic resonance imaging to examine network deficits in post-traumatic stress disorder (PTSD). These studies have provided important insights regarding the etiology of PTSD, as well as the overall organization of the brain network. Advances in functional connectomics are expected to provide insight into the pathophysiology and the development of biomarkers for diagnosis and treatment of PTSD.

Neuroactivation studies using Functional Brain MRI (기능적 자기공명영상을 이용한 뇌활성화 연구)

  • Chung, Kyung-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • Functional MRI (fMRI) provides an indirect mapping of cerebral activity, based on the detection of the local blood flow and oxygenation changes following neuronal activity (Blood Oxygenation Level Dependent). fMRI allows us to study noninvasively the normal and pathological aspects of functional cortical organization. Each fMRI study compares two different states of activity. Echo-Planar Imaging is the technique that makes it possible to study the whole brain at a rapid pace. Activation maps are calculated from a statistical analysis of the local signal changes. fMRI is now becoming an essential tool in the neurofunctional evaluation of normal volunteers and many neurological patients as well as the reference method to image normal or pathologic functional brain organization.

A Review on Brain Study Methods in Elementary Science Education - A Focus on the fMRl Method - (초등 과학 교육에서 두뇌 연구 방법의 고찰 - fMRI 활용법을 중심으로 -)

  • Shin, Dong-Hoon;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.1
    • /
    • pp.49-62
    • /
    • 2007
  • The higher cognitive functions of the human brain including teaming are hypothesized to be selectively distributed across large-scale neural networks interconnected to the cortical and subcortical areas. Recently, advances in functional imaging have made it possible to visualize the brain areas activated by certain cognitive activities in vivo. Neural substrates for teaming and motivation have also begun to be revealed. Functional magnetic resonance imaging (fMRI) provides a non-invasive indirect mapping of cerebral activity, based on the blood- oxygen level dependent (BOLD) contrast which is based on the localized hemodynamic changes following neural activities in certain areas of the brain. The fMRI method is now becoming an essential tool used to define the neuro-functional mechanisms of higher brain functions such as memory, language, attention, learning, plasticity and emotion. Further research in the field of education will accelerate the verification of the effects on loaming or help in the selection of model teaching strategies. Thus, the purpose of this study was to review brain study methods using fMRI in science education. In conclusion, a number of possible strategies using fMRI for the study of elementary science education were suggested.

  • PDF

Understanding Neurogastroenterology From Neuroimaging Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders

  • Kano, Michiko;Dupont, Patrick;Aziz, Qasim;Fukudo, Shin
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.512-527
    • /
    • 2018
  • This review provides a comprehensive overview of brain imaging studies of the brain-gut interaction in functional gastrointestinal disorders (FGIDs). Functional neuroimaging studies during gut stimulation have shown enhanced brain responses in regions related to sensory processing of the homeostatic condition of the gut (homeostatic afferent) and responses to salience stimuli (salience network), as well as increased and decreased brain activity in the emotional response areas and reduced activation in areas associated with the top-down modulation of visceral afferent signals. Altered central regulation of the endocrine and autonomic nervous responses, the key mediators of the brain-gut axis, has been demonstrated. Studies using resting-state functional magnetic resonance imaging reported abnormal local and global connectivity in the areas related to pain processing and the default mode network (a physiological baseline of brain activity at rest associated with self-awareness and memory) in FGIDs. Structural imaging with brain morphometry and diffusion imaging demonstrated altered gray- and white-matter structures in areas that also showed changes in functional imaging studies, although this requires replication. Molecular imaging by magnetic resonance spectroscopy and positron emission tomography in FGIDs remains relatively sparse. Progress using analytical methods such as machine learning algorithms may shift neuroimaging studies from brain mapping to predicting clinical outcomes. Because several factors contribute to the pathophysiology of FGIDs and because its population is quite heterogeneous, a new model is needed in future studies to assess the importance of the factors and brain functions that are responsible for an optimal homeostatic state.

A Functional Mapping Workstation of Human Brain Images

  • Paik, Chul-Hwa;Kim, Tae-Woo;Song, Myung-Jin;Yu, Hyun-Sun;Kim, Won-Ky
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.301-303
    • /
    • 1996
  • A platform is developed for fast and effective functional mapping of human brain, which can allow semi-automatically the whole processes of an image segmentation, a fusion of MR and PET images, and 3-D rendering of volumetric data, including DICOM-based image transfers from PACS archiver within a short period of time.

  • PDF

Automatic EEG and Artifact Classification Using Neural Network (신경망을 사용한 뇌파 및 Artifact 자동 분류)

  • Ahn, Chang-Beom;Lee, Taek-Yong;Lee, Sung-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.157-166
    • /
    • 1995
  • The Electroencephalogram (EEG) and evoked potential (EP) t;ave widely been used for study of brain functions. The EEG and EP signals acquired from multi-channel electrodes placed on the head surface are often interfered by other relatively large physiological signals such as electromyogram (EMG) or electroculogram (EOG). Since these artifact-affected EEG signals degrade EEG mapping, the removal of the artifact-affected EEGs is one of the key elements in neuro-functional mapping. Conventionally this task has been carried out by human experts spending lots of examination time. In this paper a neural-network based classification is proposed to replace or to reduce human expert's efforts and time. From experiments, the neural-network based classification performs as good as human experts : variation of decisions between the neural network and human expert appears even smaller than that between human experts.

  • PDF

Functional-Magnetic Resonance Imaging and Transcranial Magnetic Stimulation in a Case of Schizencephaly (뇌열 1예의 기능적 자기공명영상과 경두부 자기자극)

  • 변우목;한봉수;이재교;장용민
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.14-19
    • /
    • 2000
  • Purpose : This study was to present the functional brain mapping of both functional magnetic resonance imaging(MRI) and transcranial magnetic stimulation(TMS) in a case of schizencephaly. Materials and methods : A 28-year-old man, who had left hemiplegia and schizencephaly in right cerebral hemisphere, was exacted with both functional MRI and TMS. Motor function of left hand was decreased whereas right hand was within normal limit. For functional MRI, gradient-echo echo planar imaging($TR/TE/{\alpha}$=1.2 sec/90 msec/90) was employed. The paradigm of motor task consisted of repetitive self-paseo hand flexion-extension exercises with 1-2 Hz periods. An image set of 10 slices was repetitively acquired with 15 seconds alternating periods of task performance and rest and total 6 cycles (three ON periods and three OFF periods) were performed. In brain mapping, TMS was performed with the round magnetic stimulator (mean diameter; 90mm). The magnetic stimulation was done with 80% of maximal output. The latency and amplitude of motor evoked potential(MEP)s were obtained from both abductor pollicis brevis(APB) muscles. Results : Functional MRI revealed activation of the left primary motor cortex with flexion-extension exercises of healthy right hand. On the other hand, the left primary motor cortex, left supplementary motor cortex, and left promoter areas were activated with flexion-extension exercises of left hand. In TMS, magnetic evoked potentials were induced in no areas of right cerebral hemisphere, but in 5 areas of left corebral hemisphere from both abductor pollicis brevis. Latency, amplitude, and contour of response of the magnetic evoked potentials in both hands were similar. Conclusion : Functional MRI and TMS in a patient with schizencephaly were successfully used to localize cortical motor function. Ipsilateral motor pathway is thought to be secondary to reinforcement of the corticospinal tract of the ipsilateral motor cortex.

  • PDF