• Title/Summary/Keyword: Fundamental Circuit

Search Result 199, Processing Time 0.028 seconds

The Study On Analysis Of The Characteristics For Capacitor Motor Having Space Harmonics In Its Magnetic Field (공간고주파자속을 가진 콘덴서 전동기의 특성해석에 관한 연구)

  • Keung Yul Oh
    • 전기의세계
    • /
    • v.24 no.1
    • /
    • pp.29-42
    • /
    • 1975
  • In this paper, the electrical angle between two winding axes in the stator of the capacitor motor is put optional angle, deviding the space harmonics in its magnetic field of two windings and the leakage flux into the forward revolving field and the backward one by the revolving-field theory, its equivalent circuit which consider mutual induction between two windings is depicted. In the depicted equivalent circuit, the rotor resistance for the fundamental flux is devided into the resistance for the rotor bar and endring, and the rotor leakage reactance for the fundamental is devided into the skew leadage reactance and the other, and each circuit constants for each harmonics is expressed in terms of the circuit constants for the fundamental, so it mades easy to determine the characteristics for the capacitor motor. As the circuit constant ratios to the magnetizing reactance of the fundamental are used, motors which have same circuit constant ratios should be resembled in their characteristics.

  • PDF

Junction, Circuit and System Developments for a High-Tc Superconductor Sampler

  • Hidaka, M.;Satoh, T.;Tahara, S.
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.13-15
    • /
    • 1999
  • A Josephson sampler circuit using high-Tc superconductor (HTS) ramp-edge junctions has been designed, fabricated, and experimentally tested. It consists of five ramp-edge junctions with a stacked groundplane and is based on single-flux-quantum (SFQ) operations. The sampler was used to measure current waveforms at picosecond and microampere resolutions. We are developing a system based on the sampler for measuring the current waveform in a room-temperature sample. And measuring current flowing through wiring in a semiconductor large-scale integrated circuit is a promising application for the HTS sampler system.

  • PDF

Junction, Circuit and System Developments for a High-$T_c$ Superconductor Sampler

  • Hidaka, M.;Satoh, T.;Tahara, S.
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.81-84
    • /
    • 2000
  • A Josephson sampler circuit using high-Tc superconductor (HTS) ramp-edge junctions has been designed, fabricated, and experimentally tested. It consists of five ramp-edge junctions with a stacked groundplane and is based on single-flux-quantum (SFQ) operations. The sampler was used to measure current waveforms at picosecond and microampere resolutions. We are developing a system based on the sampler for measuring the current waveform in a room-temperature sample. And measuring current flowing through wiring in a semiconductor large-scale integrated circuit is a promising application for the HTS sampler system.

  • PDF

Analysis on the alternating torque characteristics of capacitor motor with windings not in quadrature (비대칭축콘덴서 전동기의 진동토오크 특성의 해석)

  • 오경열
    • 전기의세계
    • /
    • v.26 no.4
    • /
    • pp.41-53
    • /
    • 1977
  • With the equivalent series circuit analyzed aby revolving field theory and drawn by using the equivalent circuit constant ratios in capacitor motor with windings not in quadrature having space harmonics in its magnetic field (the above ratios are the equivalent circuit constants for the fundamental flux to the magnetizing reactance of the circuit), the equation for the alternating torque with twice line freequency in the motor is directly derived, and the alternating torque is measured with the self-made stator vibration angle amplitude measuring apparatus that is composed of a pickup, filter, photoelectric pickoff etc. The measured values satisfactorily compared with computed values. The properties of the alternating torque characteristics for respective harmonic fluxes and the r5esultant alternating torque characteristic, the effects of the alternating torque characteristics for respective harmonic fluxes on the resultant alternating torque characteristic, the effects of the variation in the motor constants and the equivalent circuit constant ratios for the fundamental flux on the alternating torque characteristics for respective harmonic fluxes and the resultant alternating torque characteristic, are made clear, applying the equation. There exist the optimum values of the motor constants and the equivalent circuit constant ratios for the fundamental flux for decreasing the alternating torque, and the value could be determined in design by the method presented in this paper.

  • PDF

High Output Power and High Fundamental Leakage Suppression Frequency Doubler MMIC for E-Band Transceiver

  • Chang, Dong-Pil;Yom, In-Bok
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.342-345
    • /
    • 2014
  • An active frequency doubler monolithic microwave integrated circuit (MMIC) for E-band transceiver applications is presented in this letter. This MMIC has been fabricated in a commercial $0.1-{\mu}m$ GaAs pseudomorphic high electron mobility transistor (pHEMT) process on a 2-mil thick substrate wafer. The fabricated MMIC chip has been measured to have a high output power performance of over 13 dBm with a high fundamental leakage suppression of more than 38 dBc in the frequency range of 71 to 86 GHz under an input signal condition of 10 dBm. A microstrip coupled line is used at the output circuit of the doubler section to implement impedance matching and simultaneously enhance the fundamental leakage suppression. The fabricated chip is has a size of $2.5mm{\times}1.2mm$.

Theoretical Study of the Circuits for Device of the High Voltage Pulse Generator (고전압 펄스 발생 장치의 회로에 관한 이론적 연구)

  • Kim, Young-Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.99-108
    • /
    • 2013
  • The high-voltage pulse generator is consist of transformers of fundamental wave and harmonic waves, and shunt capacitances. The pulse has the fundamental wave and the harmonic waves that have been increased as a series circuit by the transformers to make high voltage pulse. This paper shows that pulse generator circuit is analyzed using Miller's theorem and network theory(ABCD Matrix) and simulated in frequency and time domain using Matlab program. The output voltage of pulse were obtained to 2.5kHz, 1.8kV. Output pulse voltage increases as $L_m$ increases in low voltage circuit. In high voltage circuit, outer capacitors are related to frequency band pass characteristics.

Experimental Study of Interface Circuit Implementation in Hybrid System (Hybrid System을 위한 Interface 회로구성의 실험적 연구)

  • Myoung Sam Ko
    • 전기의세계
    • /
    • v.26 no.6
    • /
    • pp.41-47
    • /
    • 1977
  • The paper deals with the fundamental specification for the physical implementation of interface circuit, which will play an important role in information and signal trammission between computer and controlled system, and also we have proved that the digital contoller will be able to improve the data handling of interface circuit.

  • PDF

Fault-Tolerant Control of Input/Output Asynchronous Sequential Circuits with Transient Faults Violating Fundamental Mode (기본 모드를 침해하는 과도 고장이 존재하는 입력/출력 비동기 순차 회로에 대한 내고장성 제어)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.399-408
    • /
    • 2022
  • This paper proposes a corrective control system to achieve fault-tolerant control for input/output asynchronous sequential circuits vulnerable to transient faults violating fundamental mode operations. To overcome non-fundamental mode faults occurring in transient transitions of asynchronous sequential circuits, it is necessary to determine the end of unauthorized state transitions caused by the faults and to stably take the circuit from the faulty state to a desired state that is output equivalent with the normal next stable state. We address the existence condition for a proper output-feedback corrective controller that achieves fault diagnosis and fault-tolerant control for these non-fundamental mode faults. The corrective controller and asynchronous sequential circuit are implemented on field-programming gate array to demonstrate the synthesis procedure and applicability of the proposed control scheme.

Simulation Study of Characteristics for Device of the High Voltage Pulse Generator (고전압 펄스 발생 장치의 특성에 관한 시뮬레이션 연구)

  • Kim, Young-Ju;Shin, Ju-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.80-86
    • /
    • 2012
  • The high-voltage pulse generator is consist of transformers of fundamental wave and harmonic waves, and shunt capacitances. The pulse has the fundamental wave and the harmonic waves that have been increased as a series circuit by the transformers to make high voltage pulse. This paper shows the high-voltage pulse generator simulation using a circuit program with experiment data. In the equivalent circuit, magnetized inductances and loss resistances which affect output voltage, have been obtained. The output capacitor circuits have characteristics of band pass. The output voltages of the pulse width 50% and 25%(PWM) were obtained. The output of the high-voltage pulse generator is 2.5kHz, 1.8kV.

Theoretical Study of Pulse Circuits with the Load Variation for Device of the High Voltage Pulse Generator (고전압 펄스 발생 장치의 관한 부하의 변화를 고려한 펄스회로의 이론적 연구)

  • Kim, Young-Ju;Bang, Sang-Seok;Lee, Chae-Han;Kim, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.106-112
    • /
    • 2016
  • The high-voltage pulse generator consists of transformers of fundamental wave and harmonic waves, and shunt capacitors. The pulse has the fundamental wave and the harmonic waves that have been as a series circuit by the transformers to make high voltage pulse. This paper shows that pulse generator circuit is analyzed by using transformer equivalent circuits with the effect of load and simulated in time domain using Matlab program. The output voltage of pulse were obtained to 2.5kHz, 2.0kV. In high voltage circuit, capacitors are related to frequency band pass characteristics. Also, it is shown that the voltage of output pulse increases according to the growth of load.