• Title/Summary/Keyword: Fungal Cellulolysis

Search Result 3, Processing Time 0.014 seconds

Effects of LCFA on the Gas Production, Cellulose Digestion and Cellulase Activities by the Rumen Anaerobic Fungus, Neocallimastix frontalis RE1

  • Lee, S.S.;Ha, J.K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.8
    • /
    • pp.1110-1117
    • /
    • 2001
  • Responses of the rumen fungus, Neocallimastix frontalis RE1, to long chain fatty acid (LCFA) were evaluated by measuring gas production, filter paper (FP) cellulose digestion and polysaccharidase enzyme activities. LCFA (stearic acid, $C_{18:0}$; oleic acid, $C_{18:1}$; linoleic acid, $C_{18:2}$ and linolenic acid, $C_{18:3}$) were emulsitied by ultrasonication under anaerobic condition, and added to the medium. When N frontalis RE1 was grown in culture with stearic, oleic and linoleic acid, the cumulative gas production, gas pool size, FP cellulose digestion and enzymes activities significantly (p<0.05) increased at some incubation times(especially, exponential phases of fungal growth, 48~120 h of incubation) relative to that for control cultures. However, the addition of linolenic acid strongly inhibited all of the investigated parameters up to 120 h incubation, but not after 168 and 216 h of incubation. These results indicated that stearic, oleic and linoleic acids tended to have great stimulatory effects on fungal cellulolysis, whereas linolenic acid caused a significant (p<0.05) inhibitory effects on the cellulolysis by the rumen fungus. These results are the first report of the effect of LCFAs on the ruminal fungi. Further research is needed to identify the mode of action of LCFAs on fungal strains and to verify whether or not ruminal fungi have ability to hydrate unsaturated LCFAs to saturated FAs. There was high correlation between cumulative in vitro gas production and fungal growth (94.78%), FP cellulose degradation (96.34%), CMCase activity(90.86%) or xylanase activity (87.67%). Thus measuring of cumulative gas production could be a useful tool for evaluating fungal growth and/or enzyme production by ruminal fungi.

Degradation of Rice Straw by Rumen Fungi and Cellulolytic Bacteria through Mono-, Co- or Sequential- Cultures

  • Ha, J.K.;Lee, S.S.;Kim, S.W.;Han, In K.;Ushida, K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.797-802
    • /
    • 2001
  • Two strains of rumen fungi (Piromyces rhizinflata B157, Orpinomyces joyonii SG4) and three strains of rumen cellulolytic bacteria (Ruminococcus albus B199, Ruminococcus flavefaciens FD1 and Fibrobacter succinogenes S85) were used as mono-cultures or combinationally arranged as co- and sequential-cultures to assess the relative contributions and interactions between rumen fungi and cellulolytic bacteria on rice straw degradation. The rates of dry matter degradation of co-cultures were similar to those of corresponding bacterial mono-cultures. Compared to corresponding sequential-cultures, the degradation of rice straw was reduced in all co-cultures (P<0.01). Regardless of the microbial species, the cellulolytic bacteria seemed to inhibit the degradation of rice straw by rumen fungi. The high efficiency of fungal cellulolysis seems to affect bacterial degradation rates.

The Effect of Saturated Fatty Acids on Cellulose Digestion by the Rumen Anaerobic Fungus, Neocallimatix frontalis C5-1

  • Ha, J.K.;Lee, S.S.;Gao, Z.;Kim, C.-H.;Kim, S.W.;Ko, Jong Y.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.941-946
    • /
    • 2001
  • The effects of various concentrations of saturated fatty acids (SFA; caprylic, capric and stearic acids) on the growth of the anaerobic fungus, Neocallimastix frontalis C5-1 isolated from the rumen of a Korean native goat were investigated. At higher concentrations of fatty acids (0.1%, w/v), the addition of SFA strongly decreased filter paper (FP) cellulose digestion and polysaccharide-degrading enzyme activity. The sensitivity of the rumen anaerobic fungus to the added fatty acids increased in the following order: caprylic ($C_{8:0}$)>capric($C_{10:0}$)>stearic($C_{18:0}$) acid, although stearic acid had no significant (p<0.05) inhibitory effects at any of the concentrations tested. However, the addition of SFA at lower concentrations (0.01 and 0.001% levels), did not inhibit FP cellulose degradation and enzyme activity. Furthermore, although these parameters were slightly stimulated by the addition of SFA, they were not statistically different from control values. This is the first report examining the effects of fatty acids on anaerobic gut fungi. We found that the lower levels of fatty acids used in this experiment were able to stimulate the growth and specific enzyme activities of rumen anaerobic fungi, whereas the higher levels of fatty acids were inhibitory with respect to fungal cellulolysis.