• Title/Summary/Keyword: Furnace Wall Tubes

Search Result 3, Processing Time 0.016 seconds

Analysis of Density Wave Oscillation in Boiler Furnace Wall Tubes with Parallel Channel Modeling (평행관 모델링을 통한 보일러 화로벽관 내 밀도파 불안정의 해석)

  • Kim, Jinil;Choi, Sangmin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.187-196
    • /
    • 2013
  • A numerical model was developed to predict the density wave oscillation (DWO) in the furnace wall tubes of a fossil-fired once-through boiler. The transient flow fields in the tubes were obtained using a 1D finite volume method in the time domain. A header model was also implemented to simulate the parallel tube connection of the wall tubes. The inlet and outlet mass flow variation in one of the parallel tubes was examined after a heat perturbation to find the DWO. After successful verification with experimental results reported in literature, the developed model was applied to the wall tubes of a 700-MW boiler furnace. In contrast to the simulation of Takitani's experiment, in which the unstable power thresholds tended to rise in the reduced bypass channel flow, no remarkable changes were observed in the power thresholds in the parallel channel modeling of the wall tubes of the boiler furnace.

Structural Analysis of Boiler Module for Sea-Transportation (해상 운송을 위한 보일러 모듈의 구조 해석)

  • Jeon, Y.C.;Kim, T.W.;Jeong, D.G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.788-793
    • /
    • 2001
  • Finite element analysis was carried out to investigate the integrity and reliability of boiler module during sea transportation. The boiler module was supported by steel structure to relieve the instantaneous shock from oceanic wave and its primary parts were strengthened with several reinforcements. Finned tube walls which were used in the furnace wall were assumed as orthotropic plates having equivalent material properties. The bank tubes were also equivalently modeled in accordance with ASME B31.1 for the convenience of finite element modeling. The calculation results were compared with the yield stress of the material. In particular, the bank tube stress, which was evaluated by converting the calculated stresses in equivalent tubes into those in original tubes by using the ratio of diameter, was also examined with yield stress.

  • PDF

Fabrication of BSCCO Tube by Centrifugal Melting Process (원심 용융 성형법을 이용한 BSCCO 튜브 제조)

  • Kim Ki-Ik;Choi Jung Suk;Oh Sung Young;Jun Byung-Hyuk;Kim H.-R.;Hyun Ok-Bae;Kim Hyoung-Seop;Kim Chan-Joong
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 2005
  • Bi-22l2 tubes for fault current limiter (FCL) were fabricated by centrifugal melting process. $SrSO_4$ ($10\;wt.\;\%$) was added to Bi-2212 powder to lower the melting point of Bi-22l2 and to improve the mechanical properties. The BSCCO powder was completely melted at $1300\;^{\circ}C$ using the RF furnace and then poured into rotating steel mold. The steel mold, preheated at $450\;{\circ}C{\sim}550^{\circ}C$ for 2 hour was rotated at $1020{\sim}2520\;RPM$. The solidified BSCCO tube was cooled down to room temperature in the furnace for 48 hours and separated from the mold between Bi-2212 and the mold. $ZrO_2$ solution was used to separate it easily from the mold and Ag tape was attached in the mold inner wall of the mold to analysis electrical property. Bi-22l2 tube was often cracked when the cooling rate was high. BSCCO tubes with $70{\Phi}{\times}100\;mm,\;50{\Phi}{\times}100\;mm$ and $30{\Phi}{\times}150\;mm$ size were fabricated by centrifugal melting process. The $J_{c}s$ of tubes with $50{\Phi}{\times}100\;mm{\times}4.0\;t$ and $50{\Phi}{\times}100\;mm{\times}4.l\;t$ were 178 and $74.2\;A/cm^2$ at 77K, respectively. The processing condition for Bi-2212 tube fabrication was investigated using XRD and SEM analyses.

  • PDF