• Title/Summary/Keyword: GFRP reinforcements

Search Result 36, Processing Time 0.026 seconds

Finite element modelling of GFRP reinforced concrete beams

  • Stoner, Joseph G.;Polak, Maria Anna
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.369-382
    • /
    • 2020
  • This paper presents a discussion of the Finite Element Analysis (FEA) when applied for the analysis of concrete elements reinforced with glass fibre reinforced polymer (GFRP) bars. The purpose of such nonlinear FEA model development is to create a tool that can be used for numerical parametric studies which can be used to extend the existing (and limited) experiment database. The presented research focuses on the numerical analyses of concrete beams reinforced with GFRP longitudinal and shear reinforcements. FEA of concrete members reinforced with linear elastic brittle reinforcements (like GFRP) presents unique challenges when compared to the analysis of members reinforced with plastic (steel) reinforcements, which are discussed in the paper. Specifically, the behaviour and failure of GFRP reinforced members are strongly influenced by the compressive response of concrete and thus modelling of concrete behaviour is essential for proper analysis. FEA was performed using the commercial software ABAQUS. A damaged-plasticity model was utilized to simulate the concrete behaviour. The influence of tension, compression, dilatancy, mesh, and reinforcement modelling was studied to replicate experimental test data of beams previously tested at the University of Waterloo, Canada. Recommendations for the finite element modelling of beams reinforced with GFRP longitudinal and shear reinforcements are offered. The knowledge gained from this research allows for the development of a rational methodology for modelling GFRP reinforced concrete beams, which subsequently can be used for extensive parametric studies and the formation of informed recommendations to design standards.

Experimental Study on the Bond Properties between GFRP Reinforcements and Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트와 GFRP 보강근의 부착특성에 관한 실험적 연구)

  • Choi, Yun-Cheul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.573-581
    • /
    • 2013
  • In this paper, an experimental investigation of bond properties between steel fiber reinforced concrete and glass fiber reinforced polymer reinforcements was performed. The experimental variables were diameter of reinforcements, volume fraction of steel fiber, cover thickness and compressive strength of concrete. Bond failure mainly occurred with splitting of concrete cover. Main factor for splitting of concrete is tension force occurred by the displacement difference between reinforcements and concrete. Therefore, in order to prevent the bond failure between reinforcements and concrete, capacity of tensile strength of concrete cover should be upgraded. As a results of test, volume fraction of steel fiber significantly increases the bond strength. Cover thickness changes the failure mode. Diameter of reinforcements also changes the failure mode. Generally, diameter of reinforcement also affects the bond properties but this effect is not significant as volume fraction of fiber. Increase of compressive strength increases the bond strength between concrete and reinforcement because compressive strength of concrete directly affects the tensile strength of concrete.

Structural Analysis and Design of B-pillar Reinforcement using Composite Materials (복합소재를 활용한 B필러 강화재의 구조해석 및 설계)

  • Kang, Ji Heon;Kim, Kun Woo;Jang, Jin Seok;Kim, Ji Wook;Yang, Min Seok;Gu, Yoon Sik;Ahn, Tae Min;Kwon, Sun Deok;Lee, Jae Wook
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.35-46
    • /
    • 2021
  • This paper aims to reduce weight by replacing the reinforcements of the B-pillar used in vehicles with CFRP(Carbon Fiber Reinforced Plastics) and GFRP(Glass Fiber Reinforced Plastics) from the existing steel materials. For this, it is necessary to secure structural stability that can replace the existing B-pillar while reducing the weight. Existing B-pillar are composed of steel reinforcements of various shapes, including a steel outer. Among these steel reinforcements, two steel reinforcements are to be replaced with composite materials. Each steel reinforcement is manufactured separately and bonded to the B-pillar outer by welding. However, the composite reinforcements presented in this paper are manufactured at once through compression and injection processes using patch-type CFRP and rib-structured GFRP. CFRP is attached to the high-strength part of the B-pillar to resist side loads, and the GFRP ribs are designed to resist torsion and side loads through a topology optimization technique. Through structural analysis, the designed composite B-pillar was compared with the existing B-pillar, and the weight reduction ratio was calculated.

Bonding Performance of Glulam Reinforced with Textile Type of Glass- and Aramid-Fiber, GFRP and CFRP

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.156-162
    • /
    • 2011
  • To evaluate the bonding performance of reinforced glulam, the textile type of glass fiber and aramid fiber, and the sheet type of glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP) were used as reinforcements. The reinforced glulam was manufactured by inserting reinforcement between the outmost and middle lamination of 5ply glulam. The types of adhesives used in this study were polyvinyl acetate resins (MPU500H, and MPU600H), polyurethane resin and resorcinol resin. The block shear strengths of the textile type in glass fiber reinforced glulam using MPU500H and resorcinol resin were higher than 7.1 N/$mm^2$, and these glulams passed the wood failure requirement of Korean standards (KS). In case of the sheet types, GFRP reinforced glulams using MPU500H, polyurethane resin and resorcinol resin, and CFRP reinforced glulams using MPU500H and polyurethane resin passed the requirement of KS. The textile type of glass fiber reinforced glulam using resorcinol resin after water and boiling water soaking passed the delamination requirement of KS. The only GFRP reinforced glulam using MPU500H after water soaking passed the delamination requirement of KS. We conclude that the bonding properties of adhesive according to reinforcements are one of the prime factors to determine the bonding performance of the reinforced glulam.

Embedded smart GFRP reinforcements for monitoring reinforced concrete flexural components

  • Georgiades, Anastasis V.;Saha, Gobinda C.;Kalamkarov, Alexander L.;Rokkam, Srujan K.;Newhook, John P.;Challagulla, Krishna S.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.369-384
    • /
    • 2005
  • The main objectives of this paper are to demonstrate the feasibility of using newly developed smart GFRP reinforcements to effectively monitor reinforced concrete beams subjected to flexural and creep loads, and to develop non-linear numerical models to predict the behavior of these beams. The smart glass fiber-reinforced polymer (GFRP) rebars are fabricated using a modified pultrusion process, which allows the simultaneous embeddement of Fabry-Perot fiber-optic sensors within them. Two beams are subjected to static and repeated loads (until failure), and a third one is under long-term investigation for assessment of its creep behavior. The accuracy and reliability of the strain readings from the embedded sensors are verified by comparison with corresponding readings from surface attached electrical strain gages. Nonlinear finite element modeling of the smart concrete beams is subsequently performed. These models are shown to be effective in predicting various parameters of interest such as crack patterns, failure loads, strains and stresses. The strain values computed by these numerical models agree well with corresponding readings from the embedded fiber-optic sensors.

Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars

  • Yoo, Doo-Yeol;Banthia, Nemkumar
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.759-774
    • /
    • 2015
  • This study simulates the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams reinforced with steel and glass fiber-reinforced polymer (GFRP) rebars. For this, micromechanics-based modeling was first carried out on the basis of single fiber pullout models considering inclination angle. Two different tension-softening curves (TSCs) with the assumptions of 2-dimensional (2-D) and 3-dimensional (3-D) random fiber orientations were obtained from the micromechanics-based modeling, and linear elastic compressive and tensile models before the occurrence of cracks were obtained from the mechanical tests and rule of mixture. Finite element analysis incorporating smeared crack model was used due to the multiple cracking behaviors of structural UHPFRC beams, and the characteristic length of two times the element width (or two times the average crack spacing at the peak load) was suggested as a result of parametric study. Analytical results showed that the assumption of 2-D random fiber orientation is appropriate to a non-reinforced UHPFRC beam, whereas the assumption of 3-D random fiber orientation is suitable for UHPFRC beams reinforced with steel and GFRP rebars due to disorder of fiber alignment from the internal reinforcements. The micromechanics-based finite element analysis also well predicted the serviceability deflections of UHPFRC beams with GFRP rebars and hybrid reinforcements.

Evaluation of Tensile Material Properties and Confined Performance of GFRP Composite Due to Temperature Elevation (콘크리트 횡구속용 GFRP 보강재의 온도변화에 따른 인장 재료특성 및 구속성능 평가)

  • Jung, Woo-Young;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3562-3569
    • /
    • 2013
  • The performance of concrete structure decreases with change in time and the external environment. In order to reinforce the structure, the research about new material development and application of newly developed materials are widely conducted. In the case of composite FRP, it received good attention in the academia due to its high intensity-weight ratio, excellent corrosion resistency as well as good workability. When applying at the construction field, however, the utilization of FRP did not increase as much due to lack of reliability and design standard. Current study investigated the material characteristics during the temperature change at high temperature and the structural behavior from restraint effect for GFRP reinforcing materials. Two experimental variables were set in this study: GFRP reinforcements due to tensile properties of temperature and restraint compression effects. Three concrete specimen were selected for each set temperatures. For this reason, as a variable to experiment with the effects confined compression concrete members value and tensile properties with temperature reinforcement GFRP, experiment produced three pieces each for each set temperature, the concrete specimen, which is confined in the GFRP was selected each I did. For the temperature change during the experiment, the concrete specimen were mounted in order to expose to experimental high temperature for certain period of time. For compression performance evaluation, reinforcement effect from horizontal constraint of the fiber were measured using an Universal Material Testing Machine (UTM). Finally, this study revealed that the binding characteristics of GFRP materials from temperature change decreased. Also, this study showed that the maximum compression intensity decreased as the temperature increased up to $150^{\circ}C$ in the constraints ability of the GFRP reinforcements during the horizontal constraint of concrete.

Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • Hollow steel-reinforced concrete-filled GFRP tubular member is a new kind of composite members. Firstly set the mold in the GFRP tube (non-bearing component), then set the longitudinal reinforcements with stirrups (steel reinforcement cage) between the GFRP tube and the mold, and filled the concrete between them. Through the axial compression test of the hollow steel-reinforced concrete-filled GFRP tubular member, the working mechanism and failure modes of composite members were obtained. Based on the experiment, when the load reached the ranges of $55-70%P_u$ ($P_u-ultimate$ load), white cracks appeared on the surface of the GFRP tubes of specimens. At that time, the confinement effects of the GFRP tubes on core concrete were obvious. Keep loading, the ranges of white cracks were expanding, and the confinement effects increased proportionally. In addition, the damages of specimens, which were accompanied with great noise, were marked by fiber breaking and resin cracking on the surface of GFRP tubes, also accompanied with concrete crushing. The bearing capacity of the axially compressed components increased with the increase of reinforcement ratio, and decreased with the increase of hollow ratio. When the reinforcement ratio was increased from 0 to 4.30%, the bearing capacity was increased by about 23%. When the diameter of hollow part was decreased from 55mm to 0, the bearing capacity was increased by about 32%.

Bond Models for GFRP Rebar Embedded in Concrete (GFRP 보강근과 콘크리트 사이의 부착모델에 관한 고찰)

  • You, Young-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Hyeong-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.143-151
    • /
    • 2006
  • This paper presents the comparison of the goodness-of-fit test of analytical bond models between concrete and steel or GFRP reinforcements. Bond test specimens were prepared in accordance with the CSA codes and the rebars used in the test were steel and two types of commercial GFRP rebar products. Using the test data, a bond model was proposed, and comparison of goodness-of-fit test for existing bond models and proposed bond model was carried out by the least squares method. The result indicates that the proposed bond model has better goodness-of-fit test than the existing ones.

A precast slab track partially reinforced with GFRP rebars

  • Lee, Seung-Jung;Moon, Do-Young;Ahn, Chi-Hyung;Lee, Jong-Woo;Zi, Goangseup
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.239-248
    • /
    • 2018
  • This study developed and investigated a precast slab track system partially reinforced with glass fiber reinforced polymer (GFRP) rebars in the transverse direction, which mitigated the loss of track circuit current by reducing magnetic coupling between the rails and steel reinforcements. An electric analysis was conducted and the results of the analysis verified that the GFRP rebars mitigate the reduced current strength produced by electro-magnetic induction. In the study, a three-dimensional finite element method and flexural experiments were used to study the mechanical behavior of the proposed slab track.