• Title/Summary/Keyword: GHG Emission Unit

Search Result 37, Processing Time 0.027 seconds

A Study on the Calculation Method of GHG Emission in Railroad Construction (철도건설단계에서의 온실가스 배출량 산정방안 연구)

  • Lee, Jae-Young;Jo, Su-Ik;Bae, Joon-Hyung;Jung, Woo-Sung;Lee, Cheol
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2353-2355
    • /
    • 2010
  • Since the efforts in transportation for counteracting Climate Change have been enhanced, it is necessary to reduce GHG emissions from railroad construction. The aim of this study was to develop the calculation method of GHG emissions at the step of railroad construction. Main emission source was the energy consumption from the used heavy equipments. Firstly, GHG inventory including equipments list, energy consumption, and work load was established with the detailed process using standard for the unit cost of construction. Also, the energy consumption of heavy equipments during track construction at A site was collected to compare with the field data. As a result, the GHG emissions between the estimated and the field were a little different, which was caused by the inaccurate field data. Therefore, it is important to manage data efficiently for the calculation of GHG emissions in the field of railroad construction.

  • PDF

Estimating GHG Emissions from Agriculture at Detailed Spatial-scale in Geographical Unit (상세 공간단위 농업분야 온실가스 배출량 산정 방안 연구)

  • Kim, Solhee;Jeon, Hyejin;Choi, Ji Yon;Seo, Il-Hwan;Jeon, Jeongbae;Kim, Taegon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.69-80
    • /
    • 2023
  • Carbon neutrality in agriculture can be derived from systematic GHG reduction policies based on quantitative environmental impact analysis of GHG-emitting activities. This study is to explore how to advance the calculation of carbon emissions from agricultural activities to the detailed spatial level to a spatial Tier 3 level (Tier 2.5 level), methodologically beyond the Tier 2 approach. To estimate the GHG emissions beyond the Tier 2.5 level by region for detailed spatial units, we constructed available activity data on carbon emission impact factors such as rice cultivation, agricultural land use, and livestock. We also built and verified detailed data on emission activities at the field level through field surveys. The GHG emissions were estimated by applying the latest national emission factors and regional emission factors according to the IPCC 2019 GL based on the field-level activity data. This study has significance that it explored ways to build activity data and calculate GHG emissions through statistical data and field surveys based on parcels, one of the smallest spatial units for regional carbon reduction strategies. It is expected that by utilizing the activity data surveyed for each field and the emission factor considering the activity characteristics, it will be possible to improve the accuracy of GHG emission calculation and quantitatively evaluate the effect of applying reduction policies.

A quantitative analysis of greenhouse gases emissions by multiple fisheries for catching the same species (hairtail and small yellow croaker) (동일 어종(갈치, 참조기) 어획에 대한 다수 어업별 온실가스 배출량 정량적 분석)

  • KANG, Kyoungmi;LEE, Jihoon;SHIN, Dongwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.2
    • /
    • pp.149-161
    • /
    • 2021
  • The concern on the greenhouse gas emission is strongly increasing globally. In fishery industry section, the greenhouse gas emissions are an important issue according to The Paris Climate Change Accord in 2015. The Korean government has a plan to reduce the GHG emissions as 4.8% compared to the BAU in fisheries until 2020. Furthermore, the Korean government has also declared to achieve the carbon neutrality in 2050 at the Climate Adaptation Summit 2021. However, the investigation on the GHG emissions from Korean fisheries did not carry out extensively. Most studies on GHG emissions from Korean fishery have dealt with the GHG emissions by fishery classification so far. However, follow-up studies related to GHG emissions from fisheries need to evaluate the GHG emission level by species to prepare the adoption of environmental labels and declarations (ISO 14020). The purpose of this research is to investigate which degree of GHG emitted to produce the species (hairtail and small yellow croaker) from various fisheries. Here, we calculated the GHG emission to produce the species from the fisheries using the Life Cycle Assessment method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel use coefficients of the fisheries for the species are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for producing the unit weight species and annual production are calculated by fishery classification. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.

Estimation of greenhouse gas (GHG) emission from wastewater treatment plants and effect of biogas reuse on GHG mitigation

  • Chang, Jin;Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.173-183
    • /
    • 2014
  • A comprehensive mathematical model was developed for this study to estimate on-site and off-site GHG emissions from wastewater treatment plants (WWTPs). The model was applied to three different hybrid WWTPs (S-WWTP, J-WWTP, and T-WWTP) including anaerobic, anoxic, and aerobic process, located in Seoul City, South Korea. Overall on-site and off-site GHG emissions from S-WWTP, J-WWTP, and T-WWTP were $305,253kgCO_2e/d$, $282,682kgCO_2e/d$, and $117,942kgCO_2e/d$, respectively. WWTP treating higher amounts of wastewater produced more on-site and off-site GHG emissions. On average, the percentage contribution of on-site and off-site emissions was 3.03% and 96.97%. The highest amount of on-site GHG emissions was generated from anoxic process and the primary on-site GHG was nitrous oxide ($N_2O$). Off-site GHG emissions related to electricity consumption for unit operation was much higher than that related to production of chemicals for on-site usage. Recovery and reuse of biogas significantly reduced the total GHG emissions from WWTPs. The results obtained from this study can provide basic knowledge to understand the source and amount of GHG emissions from WWTPs and strategies to establish lower GHG emitting WWTPs.

A Methodology for Evaluating the Effects of Transportation Policies Related to Greenhouse Gas Reduction (교통온실가스 감축정책의 효과분석 방법론 연구)

  • LEE, Kyu Jin;YI, Yongju;CHOI, Keechoo
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • The purpose of this study is to establish a methodology for evaluating quantitative effects of transportation GHG (greenhouse gas) reduction-related policies that were implemented based on the reduction goals of transportation GHG and effective implementation plans. This study uses a modal utility function and demand estimation models as well as a GHG emission basic unit estimation model by each transportation mode based on actual traffic and emission data. The results showed that the effects of GHG reduction policies such as electric vary from region to region, and from vehicle to vehicle. It is also confirmed that an eco-drive promotion policy, one of the lowest budget policies, is expected to contribute to high reduction in GHG. In addition, not only automobile emission improvement policies but also the promotion policies of public transportation are expected to highly reduce GHG as confirmed quantitatively in this study. The results of this study are expected to be useful for national and local governments' evaluation of GHG reduction policies to cope with the post 2020.

An Analysis of Energy Consumption and GHG Emission per Unit of Rail and Road Transportation (철도와 도로 수송부문의 에너지 소비 및 온실가스 배출 원단위 분석)

  • Kim, Byung-Kwan;Lee, Jin-Sun;Kim, Hyoun-Ku;Lee, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • In general, the rail transportation recognized as a better transportation mode than road transportation in terms of the environment. However, due to a lack of quantitative analysis based on Korean data, foreign cases for environmental advantages of the railway have often been cited in Korea. To address this issue, we estimated the energy consumption of passenger and freight transportation using certified activity data from Korea Railroad Statistics and the Electrical Work Report for railway and the Energy Consumption Survey for road. We estimated the Green House Gas emission of passenger and freight transportation on a Tier 1 level by applying the IPCC 2006 Guideline. Finally, we calculated the energy consumption unit and GHG emission unit to determine the environmental impact of rail and road transportation. We also compared the analyzed results of high-speed rail and auto as typical means of rail and road transportation.

A quantitative analysis of greenhouse gases emissions from catching swimming crab and snow crab through cross-analysis of multiple fisheries (다수 업종의 교차분석을 통한 꽃게 및 대게 어획 시 온실가스 배출량의 정량적 분석)

  • Gunho LEE;Jihoon LEE;Sua PARK;Minseo PARK
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.19-27
    • /
    • 2023
  • The interest in greenhouse gases (GHG) emitted from all industries is emerging as a very important issue worldwide. This is affecting not only the global warming, but also the environmentally friendly competitiveness of the industry. The fisheries sector is increasingly interested in greenhouse gas emissions also due to the Paris Climate Agreement in 2015. Korean industry and government are also making a number of effort to reduce greenhouse gas emissions so far, but the effort to reduce GHG in the fishery sector is insufficient compared to other fields. Especially, the investigation on the GHG emissions from Korean fisheries did not carry out extensively. The studies on GHG emissions from Korean fishery are most likely dealt with the GHG emissions by fishery classification so far. However, the forthcoming research related to GHG emissions from fisheries is needed to evaluate the GHG emission level by species to prepare the adoption of Environmental labels and declarations (ISO 14020). The purpose of this research is to investigate which degree of GHG emitted to produce the species (swimming crab and snow crab) from various fisheries. Here, we calculated the GHG emission to produce the species from the fisheries using the life cycle assessment (LCA) method. The system boundary and input parameters for each process level are defined for LCA analysis. The fuel use coefficients of the fisheries for the species are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for producing the unit weight species and annual production are calculated by fishery classification. The results will be helpful to establish the carbon footprint of seafood in Korea.

A Study of GHG-AP Integrated Inventories and Alternative Energy Use Scenario of Energy Consumption in the University (대학 내 에너지 소비에 따른 온실가스-대기오염 통합 인벤토리 및 대체 에너지 사용 시나리오 분석)

  • Jung, Jae-Hyung;Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1643-1654
    • /
    • 2014
  • The university is one of the main energy consumption facilities and thereby releases a large amount of greenhouse gas (GHG). Accordingly, efforts for reducing energy consumption and GHG have been established in many local as well as international universities. However, it has been limited to energy consumption and GHG, and has not included air pollution (AP). Therefore, we estimated GHG and AP integrated emissions from the energy consumed by Seoul National University of Science and Technology during the years between 2010 and 2012. In addition, the effect of alternative energy use scenario was analysed. We estimated GHG using IPCC guideline and Guidelines for Local Government Greenhouse Inventories, and AP using APEMEP/EEA Emission Inventory Guidebook 2013 and Air Pollutants Calculation Manual. The estimated annual average GHG emission was $11,420tonCO_{2eq}$, of which 27% was direct emissions from fuel combustion sectors, including stationary and mobile source, and the remaining 73% was indirect emissions from purchased electricity and purchased water supply. The estimated annual average AP emission was 7,757 kgAP, of which the total amount was from direct emissions only. The annual GHG emissions from city gas and purchased electricity usage per unit area ($m^2$) of the university buildings were estimated as $15.4kgCO_{2eq}/m^2$ and $42.4tonCO_{2eq}/m^2$ and those per person enrolled in the university were $210kgCO_{2eq}$/capita and $577kgCO_{2eq}$/capita. Alternative energy use scenarios revealed that the use of all alternative energy sources including solar energy, electric car and rain water reuse applicable to the university could reduce as much as 9.4% of the annual GHG and 34% of AP integrated emissions, saving approximately 400 million won per year, corresponding to 14% of the university energy budget.

GHG-AP Integrated Emission Inventories and Per Unit Emission in Biomass Burning Sector of Seoul (서울시 생물성 연소부문 온실가스-대기오염 통합 인벤토리 및 배출원단위분석)

  • Jung, Jaehyung;Kwon, O-Yul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.83-91
    • /
    • 2015
  • Biomass burning is known to be one of the main sectors emitting greenhouse gases as well as air pollutants. Unfortunately, the inventory of biomass burning sector has not been established well. We estimated greenhouse gas (GHG) and air pollution (AP) integrated emissions from biomass burning sector in Seoul during year 2010. The data of GHG and AP emissions from biomass burning, classified into open burning, residential fireplace and wood stove, meat cooking, fires, and cremation, were obtained from Statistics Korea and Seoul City. Estimation methodologies and emission factors were gathered from reports and published literatures. Estimated GHG and AP integrated emissions during year 2010 were $3,867tonCO_{2eq}$, and 2,320 tonAP, respectively. Major sources of GHG were forest fires ($1,533tonCO_{2eq}$) and waste open burning ($1,466tonCO_{2eq}$), while those of AP were meat cooking (1,240 tonAP) and fire incidence (907 tonAP). Total emissions by administrative district in Seoul, representing similar patterns in both GHG and AP, indicated that Seocho-gu and Gangseo-gu were the largest emitters whereas Jung-gu was the smallest emitter, ranged in $2{\sim}165tonCO_{2eq}$ and 0.1~8.31 tonAP. GHG emissions per $km^2$ showed different results from total emissions in that Gwanak-gu, Jungnang-gu, Gangdong-gu and Seodaemun-gu were the largest emitters, while Seocho-gu and Gangseo-gu were near-averaged emission districts, ranged in $0.2{\sim}21tonCO_{2eq}/km^2$. However, AP emissions per $km^2$ revealed relatively minor differences among districts, ranged in $2.3{\sim}6.1tonAP/km^2$.

A quantitative analysis of greenhouse gas emissions from the major coastal fisheries using the LCA method (전과정평가방법에 의한 주요 연안어업의 온실가스 배출량 정량적 분석)

  • KIM, Hyun-young;YANG, Yong-su;HWANG, Bo-kyu;LEE, Jihoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.1
    • /
    • pp.77-88
    • /
    • 2017
  • The concern on the greenhouse gas emissions is increasing globally. Especially, the greenhouse gas emission from fisheries is an important issue due to Cancun Agreements Mexico in 1992 and the Kyoto protocol in 2005. Furthermore, the Korean government has a plan to reduce the GHG emissions as 5.2% compared to the BAU in fisheries until 2020. However, the investigation on the GHG emissions from Korean fisheries has not been executed much. Therefore, the quantitative analysis of GHG emissions from Korean fishery industry is needed as the first step to find a relevant way to reduce GHG emissions from fisheries. The purpose of this research is to investigate which degree of GHG emitted from the major coastal fisheries such as coastal gillnet fishery, coastal dual purpose fishery, coastal pots fishery and coastal small scale stow net fishery. Here, we calculated the GHG emission from the fisheries using the LCA (Life Cycle Assessment) method. The system boundary and input parameters for each process level are defined for LCA analysis. The fuel use coefficients of the fisheries are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for the unit weight of fishes are also calculated with consideration to the different consuming areas. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.