• Title/Summary/Keyword: GLUT4

Search Result 182, Processing Time 0.03 seconds

GLUT Phosphorylation May be Required to GLUT Translocation Mechanism

  • Hah, Jong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.497-506
    • /
    • 2000
  • In this work, GLUTs phosphorylations by a downstream effector of PI3-kinase, $PKC-{\zeta},$ were studied, and GLUT4 phosphorylation was compared with GLUT2 phosphorylation in relation to the translocation mechanism. Prior to phosphorylation experiment, $PKC-{\zeta}$ kinase activity was determined as $20.76{\pm}4.09$ pmoles Pi/min/25 ng enzymes. GLUT4 was phosphorylated by $PKC-{\zeta}$ and the phosphorylation was increased on the vesicles immunoadsorpted from LDM and on GLUT4 immunoprecipitated from GLUT4- contianing vesicles of adipocytes treated with insulin. However, GLUT2 in hepatocytes was neither phosphorylated by $PKC-{\zeta}$ nor changed in response to insulin treatment. It was confirmed by measuring the subcellular distribution of GLUT2 based on GLUT2 immunoblot density among the four membrane fractions before and after insulin treatment. Total GLUT2 distributions at PM, LYSO, HDM and LDM were $37.7{\pm}12.0%,\;42.4{\pm}12.1%,\;19.2{\pm}5.0%\;and\;0.7{\pm}1.2%$ in the absence of insulin. Total GLUT2 distribution in the presence of insulin was almost same as that in the absence of insulin. Present data with previous findings suggest that GLUT4 translocation may be attributed to GLUT4 phosphorylation by $PKC-{\zeta}$ but GLUT2 does not translocate because GLUT2 is not phosphorylated by the kinase. Therefore, GLUT phosphorylation may be required in GLUT translocation mechanism.

  • PDF

Comparative Effects of $PKB-{\alpha}$ and $PKC-{\zeta}$ on the Phosphorylation of GLUT4-Containing Vesicles in Rat Adipocytes

  • Hah, Jong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.487-496
    • /
    • 2000
  • Insulin stimulates glucose transport in muscle and fat cells by promoting the translocation of glucose transporter (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3-kinase) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt and $PKC-{\zeta}$, those are known as the downstream target of PI3-kinase in regulation of GLUT4 translocation, is not known yet. An interesting possibility is that these protein kinases phosphorylate GLUT4 directly in this process. In the present study, $PKB-{\alpha}$ and $PKC-{\zeta}$ were added exogenously to GLUT4-containing vesicles purified from low density microsome (LDM) of the rat adipocytes by immunoadsorption and immunoprecipitation for direct phosphorylation of GLUT4. Interestingly GLUT4 was phosphorylated by $PKC-{\zeta}$ and its phosphorylation was increased in insulin stimulated state but GLUT4 was not phosphorylated by $PKB-{\alpha}.$ However, the GST-fusion proteins, GLUT4 C-terminal cytoplasmic domain (GLUT4C) and the entire major GLUT4 cytoplasmic domain corresponding to N-terminus, central loop and C-terminus in tandem (GLUT4NLC) were phosphorylated by both $PKB-{\alpha}$ and $PKC-{\zeta}.$ The immunoblots of $PKC-{\zeta}$ and $PKB-{\alpha}$ antibodies with GLUT4-containing vesicles preparation showed that $PKC-{\zeta}$ was co-localized with the vesicles but not $PKB-{\alpha}.$ From the above results, it is clear that $PKC-{\zeta}$ interacts with GLUT4-containing vesicles and it phosphorylates GLUT4 protein directly but $PKB-{\alpha}$ does not interact with GLUT4, suggesting that insulin-elicited signals that pass through PI3-kinase subsequently diverge into two independent pathways, an Akt pathway and a $PKC-{\zeta}$ pathway, and that later pathway contributes, at least in part, insulin stimulation of GLUT4 translocation in adipocytes via a direct GLUT4 phosphorylation.

  • PDF

Fagopyritol, a Derivative of D-chiro-inositol, Induces GLUT4 Translocation via Actin Filament Remodeling in L6-GLUT4myc Skeletal Muscle Cells (랫드 근육세포에서 fagopyritol이 액틴 필라멘트 구조와 포도당 수송체 4에 미치는 영향)

  • Nam, Hajin;Hwang, In Koo;Jung, Harry;Kwon, Seung-Hae;Park, Ok Kyu;Suh, Jun Gyo
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1163-1169
    • /
    • 2013
  • Insulin induces glucose transporter 4 (GLUT4) translocation to the muscle cell surface. As fagopyritol has insulin-like effects, the effects of fagopyritol on GLUT4 translocation and filamentous (F) actin remodeling in L6-GLUT4myc skeletal muscle cells were investigated. Fagopyritol significantly increased plasma membrane GLUT4 levels compared with the basal control in L6-GLUT4myc myoblast cells. Phosphatidylinositol (PI) 3-kinase inhibitor (LY294002) treatment prevented GLUT4 translocation to the plasma membrane in the myoblasts. Fagopyritol treatment apparently stimulates F-actin remodeling in myoblasts. In addition, fagopyritol treatment induced GLUT4 translocation and F-actin remodeling in myotubes. Taken together, these results suggest that fagopyritol promotes GLUT4 translocation and F-actin remodeling by activating the PI 3-kinase-dependent signaling pathway.

Correlation of Gene Expression between Adiponectin and Glucose Transporter 4 in Mouse Adipose Tissue (생쥐 지방조직에서의 아디포넥틴과 포도당수송체-4 유전자 발현의 상관관계)

  • Lee, Yong-Ho
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.895-902
    • /
    • 2014
  • Adiponectin has been known to improve insulin sensitivity and elicit glucose uptake via increased glucose transporter 4 (GLUT4) translocation. In the current study, mRNA expression levels of adiponectin and GLUT4 were measured in subcutaneous adipose tissue from C57BL/6 mice fed normal (ND) or high-fat diet (HFD) until 16, 26, 36, 47, or 77 weeks of age starting from 6 weeks of age. Expression levels were also measured in mice with calorie restriction (CR) and in thiazolidinedione (TZD) treated mice. Using quantitative real-time PCR, we demonstrated that GLUT4 expression in adipose tissue significantly decreased in HFD mice groups and increased in CR (p<0.05) and TZD (p=0.007) groups while there was no difference in adiponectin mRNA expression levels between experimental and control groups. General linear regression models were used to assess the association of gene expression levels between adiponectin and GLUT4 and to determine whether adiponectin affects GLUT4 transcription. mRNA expression levels of adiponectin and GLUT4 are significantly associated each other in mice fed a ND (p<0.0001) or HFD (p<0.0001), in groups separated into each age and diet, and CR group (p=0.002), but not in TZD group (p=0.73). These results demonstrated that gene expression of adiponectin and GLUT4 is strongly associated, suggesting that there is a common regulatory mechanism for adiponectin and GLUT4 gene expression and/or adiponectin has a direct role in GLUT4 gene expression in adipose tissue.

Molecular Cloning and mRNA Expression of the Porcine Insulin-responsive Glucose Transporter (GLUT4)

  • Zuo, Jianjun;Dai, Fawen;Feng, Dingyuan;Cao, Qingyun;Ye, Hui;Dong, Zemin;Xia, Weiguang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.640-648
    • /
    • 2010
  • Insulin-responsive glucose transporter 4 (GLUT4) is a member of the glucose transporter family and mainly presents in skeletal muscle and adipose tissue. To clarify the molecular structure of porcine GLUT4, RACE was used to clone its cDNA. Several cDNA clones corresponding to different regions of GLUT4 were obtained by amplifying reverse-transcriptase products of total RNA extracted from Landrace porcine skeletal muscles. Nucleotide sequence analysis of the cDNA clones revealed that porcine GLUT4 cDNA was composed of 2,491 base pairs with a coding region of 509 amino acids. The deduced amino acid sequence was over 90% identical to human, rabbit and cattle GLUT4. The tissue distribution of GLUT4 was also examined by Real-time RT-PCR. The mRNA expression abundance of GLUT4 was heart>liver, skeletal muscle and brain>lung, kidney and intestine. The developmental expression of GLUT4 and insulin receptor (IR) was also examined by Real-time RT-PCR using total RNA extracted from longissimus dorsi (LM), semimembranosus (SM), and semitendinosus (SD) muscle of Landrace at the age of 1, 7, 30, 60 and 90 d. It was shown that there was significant difference in the mRNA expression level of GLUT4 in skeletal muscles of Landrace at different ages (p<0.05). The mRNA expression level of IR also showed significant difference at different ages (p<0.05). The developmental change in the mRNA expression abundance of GLUT4 was similar to that in IR, and both showed a higher level at birth and 30 d than at other ages. However, there was no significant tissue difference in the mRNA expression of GLUT4 or IR (p>0.05). These results showed that the nucleotide sequence of the cDNA clones was highly identical with human, rabbit and cattle GLUT4 and the developmental change of GLUT4 mRNA in skeletal muscles was similar to that of IR, suggesting that porcine GLUT4 might be an insulin-responsive glucose transporter. Moreover, the tissue distribution of GLUT4 mRNA showed that GLUT4 might be an important nutritional transporter in porcine skeletal muscles.

Decreased GLUT 4 mRNA Levels did not Related with Degree of Hyperglycemia in Skeletal Muscles of Streptozotocin-induced Diabetic Rats

  • Park, So-Young;Kim, Jong-Yeon;Kim, Yong-Woon;Lee, Suck-Kang
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.231-236
    • /
    • 1996
  • In our previous study (Kim et al, 1991), GLUT 4 protein content correlated negatively with plasma glucose levels in skeletal muscles of STZ-induced diabetic rats. Thus, in this study, to confirm whether expression of GLUT 4 correlate negatively with degree of hyperglycemia, we measured levels of GLUT 4 mRNA in red and white gastrocnemius muscles in STZ-induced mild and severe diabetic rats. Rats were randomly assigned to control, mild, and severe diabetic groups, and the diabetes was induced by intraperitoneal administration of STZ. The experiment was carried out 10 days after STZ administration. Gastrocnemius red and white muscles were used fur the measurement of GLUT 4 expression. Plasma glucose levels of mild and severe diabetic rats were increased compared to control rats (control, mild, and severe diabetes; $6.4{\pm}0.32,\;9.4{\pm}0.68,\;and\;22.0{\pm}0.58$ mmol/L, respectively). Plasma insulin levels of mild and severe diabetic rats were decreased compared to control rats (control, mild, and severe diabetes; $198{\pm}37,\;l14{\pm}14,\;and\;90{\pm}15$ pmol/L, respectively). GLUT 4 mRNA levels of gastrocnemius red muscles in mild and severe diabetic rats were decreased compared to control rats ($64{\pm}1.2%\;and\;71{\pm}2.0%$ of control, respectively), but GLUT 4 mRNA levels in gastrocnemius white muscles were unaltered in diabetic rats. In summary, GLUT 4 mRNA levels were decreased in STZ-induced diabetic rats but did not correlated negatively with degree of hyperglycemia, and this result suggest that the regulatory mechanisms of decreased GLUT 4 mRNA levels are hypoinsulinemia and/or other metabolic factor but not hyperglycemia. And regulation of GLUT 4 expression in STZ-induced diabetes between red and white enriched skeletal muscles may be related to a fiber specific gene regulatory mechanism.

  • PDF

Glucose Transporters and Insulin Action : Some Insights into Diabetes Management

  • Jung, Chan-Y.;Lee, Wan
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.329-334
    • /
    • 1999
  • Insulin stimulates glucose uptake in muscle and adipose cells primarily by recruiting GLUT4 from an intracellular storage pool to the plasma membrane. Dysfunction of this process known as insulin resistance causes hyperglycemia, a hallmark of diabetes and obesity. Thus the understanding of the mechanisms underlying this process at the molecular level may give an insight into the prevention and treatment of these health problems. GLUT4 in rat adipocytes, for example, constantly recycles between the cells surface and an intracellular pool by endocytosis and exocytosis, each of which is regulated by an insulin-sensitive and GLUT4-selective sorting mechanism. Our working hypothesis has been that this sorting mechanism includes a specific interaction of a cytosolic protein with the GLUT4 cytoplasmic domain. Indeed, a synthetic peptide of the C-terminal cytoplasmic domain of GLUT4 induces an insulin-like GLUT4 recruitment when introduced in rat adipocytes. Relevance of these observations to a novel euglycemic drug design is discussed.

  • PDF

Differential Expression of Glucose Transporter Gene in Mouse Early Embryos (생쥐 초기배아의 Glucose Transporter유전자 발현 양상에 관한 연구)

  • Youm, Hye-Won;Byun, Hye-Kyung;Song, Gyun-Ji;Kim, Hae-Kwon;Lee, Ho-Joon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.1
    • /
    • pp.77-86
    • /
    • 1998
  • The uptake of glucose for metabolism and growth is essential to most animal cells and is mediated by glucose-transporter (GLUT) proteins. The aim of this study was to determine which class of glucose transporter molecules was responsible for uptake of glucose in the mouse early embryo and at which stage the corresponding genes were expressed. In addition, co-culture system with vero cell was used to investigate the effect of the system on GLUT expression. Two-cell stage embryos were collected from the superovulated ICR female and divided into 3 groups. As a control, embryos were cultured in 0.4% BSA-T6 medium which includes glucose. For the experimental groups, embryos were cultured in either co-culture system with vero cells or glucose-free T6 medium supplemented with 0.4% BSA and pyruvate as an energy substrate. 2-cell to blastocyst stage embryos in those groups were respectively collected into microtubes (50 embryos/tube). Total RNA was extracted and RT-PCR was performed. The products were analysed after staining ethidium bromide by 2% agarose gel electrophoresis. Blastocysts were collected from each group at l20hr after hCG injection. They were fixed in 2.5% glutaraldehyde, stained with hoechst, and mounted for observation. In control, GLUT1 was expressed from 4-cell to blastocyst. GLUT2 and GLUT3 were expressed in morula and blastocyst. GLUT4 was expressed in all stages. When embryos were cultured in glucose-free medium, no significant difference was shown in the expression of GLUT1, 2 and 3, compared to control. However GLUT4 was not expressed until morular stage. When embryos were co-cultured with vero cell, there was no significant difference in the expression of GLUT1, 2, 3 and 4 compared to control. To determine cell growth of embryos, the average cell number of blastocyst was counted. The cell number of co-culture ($93.8{\pm}3.1$, n=35) is significantly higher than that of control and glucose-free group ($76.6{\pm}3.8$, n=35 and $68.2{\pm}4.3$, n=30). This study shows that the GLUT genes are expressed differently according to embryo stage. GLUTs were detectable throughout mouse preimplantation development in control and co-culture groups. However, GLUT4 was not detected from 2- to 8-cell stage but detected from morula stage in glucose-free medium, suggested that GLUT genes are expressed autocrinally in the embryo regardless of the presence of glucose as an energy substrate. In addition, co-culture system can increase the cell count of blastocyst but not improve the expression of GLUT. In conclusion, expression of GLUT is dependent on embryo stage in preimplantation embryo development.

  • PDF

Effects of Different Exercise Intensities on GLUT-4 and GRP-78 Protein Expression in Soleus Muscle of Streptozotocin-Induced Diabetic Rats with Caffeine Oral Administration (카페인 경구투여가 운동강도 차이에 따른 당뇨유발 흰쥐 가자미근의 GLUT4 및 GRP78 단백질 발현에 미치는 영향)

  • Yoon, Jae-Suk;Yoon, Jin-Hwan
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.741-746
    • /
    • 2004
  • This study investigated the response of GLUT-4 and GRP-78 protein expression in soleus muscle of Streptozotocin-induced diabetic rats with caffeine oral administration by imposing different exercise intensities. Rats were randomly divided into 5 groups (n=6 in each group): diabetic group (D), diabetic-caffeine group (DC), diabetic-caffeine group with low intensity exercise (DCL), diabetic-caffeine group with moderate intensity exercise (DCM) and diabetic-caffeine group with high intensity exercise (DCH). The rats in DCL, DCM and DCH groups were exercised acutely by treadmill running for 8 meter/m, 16 meter/m and 25 meter/m, respectively. Little difference in GLUT-4 protein expression was shown in DC and DCL compared to D. GLUT-4 protein expression was decreased in DCM and increased in DCH was observed. GRP-78 protein expressions in DCL, DCM and DCH were little lower than that of D. An increase in GRP-78 protein was observed in DC. Improved insulin sensitivity with acute high intensity exercise gives the rats important therapy that lowers insulin requirement. This improvement of insulin sensitivity for glucose transport in skeletal muscle results from translocation of the GLUT-4 protein from the endoplasmic reticilum to the cell surface and increase in total quantity of GLUT-4 protein. It is not clear what mechanism reduced GRP-78 protein level in exercise group. It is merely conjectured that caffeine-induced lipolysis provided cells with energy in abundance and this relieved stress which cells are subjected to receive when performing exercise.

Molecular Characterization of Hanwoo Glucose Transporter 4 Gene (한우 Glucose Transporter 4 유전자의 분자생물학적 해석)

  • Lee, S.M.;Jeong, Y.H.;Kim, H.M.;Park, H.Y.;Yoon, D.H.;Moon, S.J.;Chung, E.R.;Kang, M.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1087-1094
    • /
    • 2005
  • The uptake of glucose for metabolism and growth is essential to most animal cells and is mediated by glucose transport protein. In the glucose transport protein family, GLUT4 plays a key role in cellular glucose uptake stimulated by insulin in skeletal muscles and adipose tissue in rodents and human. In this studies, we reported the identification, characterization, and expression of Hanwoo GLUT4 gene. The Hanwoo GLUT4 cDNA includes a 1527 bp open reading frame encoding a protein of 509 amino acids. The GLUT4 amino acid sequences of the Hanwoo show strong conservation with the corresponding sequences reported in other species. The highest mRNA expression of GLUT4 was detected in heart and lower expression was detected in rib meat, sirloin, and colon. We confirmed the expression of GLUT4 in the subcutaneous and small intestinal adipose tissue using RT-PCR. To investigate the expression of GLUT4 in the bovine intramuscular adipose differentiation, fibroblast-like cells were isolated from the sirloin of Hanwoo bull aged 12 months by collagenase digestion of minced tissue and cultured with activators of PPAR gamma. We identified that GLUT4 mRNA expression decreased during differentiation of preadipocytes into adipocyte in Korean cattle. These results indicated that function of GLUT4 in bovine adipose tissue was different from that of mouse and human.