• Title/Summary/Keyword: GPS TEC

Search Result 49, Processing Time 0.024 seconds

Combined GPS/GLONASS Relative Receiver DCB Estimation Using the LSQ Method and Ionospheric TEC Changes over South Korea

  • Choi, Byung-Kyu;Yoon, Ha Su;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2018
  • The use of dual-frequency measurements from the Global Navigation Satellite System (GNSS) enables us to observe precise ionospheric total electron content (TEC). Currently, many GNSS reference stations in South Korea provide both GPS and GLONASS data. In the present study, we estimated the grid-based TEC values and relative receiver differential code biases (DCB) from a GNSS network operated by the Korea Astronomy and Space Science Institute. In addition, we compared the diurnal variations in a TEC time series from solutions of the GPS only, the GLONASS only, and combined GPS/GLONASS processing. A significant difference between the GPS only TEC and combined GPS/GLONASS TEC at a specific grid point over South Korea appeared near the solar terminator. It is noted that GLONASS measurements can contribute to observing a variation in ionospheric TEC over high latitude regions.

DETERMINATION OF TEC IN THE IONOSPHERE BY USING THE GPS PHASE SIGNAL (GPS 위성의 위상신호를 이용한 이온층의 전자수 파악)

  • 박성원;최규홍;박필호
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.285-292
    • /
    • 1999
  • To determine a geographical position by GPS signal, the effect of the ionosphere must be considered to improve accuracy. This has led us to continuously try to find the TEC of the ionosphere by using the GPS signal. So far the way to find TEC has been developed and the information obtained from this can be used not only to increase the accuracy of determining the position, but also to study the ionosphere. In this research, the TEC MAP over Korea was obtained by using the data collected from eight GPS stations around the Far East Asia, which is the common way to represent TEC over some regional or global region.

  • PDF

Long-term variation of total electron contents over Daejeon measured from Global Positioning System between 2000 and 2010

  • Lee, Chi-Na;Chung, Jong-Kyun
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.27.1-27.1
    • /
    • 2011
  • This study is about the ionospheric variation on the Korean Peninsula using GPS TEC data from Daejeon IGS GPS site. It has accumulated the 11 years GPS data from 2000. In this work, the hourly and daily averaged TEC data are used. Data period covers a full solar cycle from 2000 to 2010 (11 years) which the total observed days are 98%. The mean TEC data shows the annual/semiannual variation, solar cycle and 27 days. GPS TEC has a good correlation with solar F10.7 index. We also compare with planetary Kp and AE indices. The maximum of the daily mean GPS TEC is around 50 TECU at 2000 and that value of 2009 is near 10 TECU. we confirms that the GPS TEC is a good indicator for ionospheric variation for the mid-latitudinal region to understand the ionospheric climatology over Korea Peninsula.

  • PDF

Real-time GPS Ionospheric TEC Estimation over South Korea

  • Choi, Byung-Kyu;Yoo, Sung-Moon;Roh, Kyoung-Min;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.207-212
    • /
    • 2013
  • Ionosphere is one of the largest error sources when the navigational signals produced by Global Positioning System (GPS) satellites are transmitted. Therefore it is very important to estimate total electron contents (TEC) in ionosphere precisely for navigation, precise positioning and some other applications. When we provide ionospheric TEC values in real-time, its application can be expanded to other areas. In this study we have used data obtained from nine Global Navigation Satellite System (GNSS) reference stations which have been operated by Korea Astronomy and Space Science Institute (KASI) to detect ionospheric TEC over South Korea in real-time. We performed data processing that covers converting 1Hz raw data delivered from GNSS reference stations to Receiver INdependent Exchange (RINEX) format files at intervals of 5 minutes. We also analyzed the elevation angles of GPS satellites, vertical TEC (VTEC) values and their changes.

GPS TEC Responses to Solar Flare Eruption and Geomagnetic Storm in 2011

  • Chung, Jong-Kyun;Lee, Chi-Na
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.27.2-27.2
    • /
    • 2011
  • The Total Electron Content (TEC) measured from Global Positioning System (GPS) can be continuously or peculiarly increased (positive ionospheric storm) or decreased (negative ionospheric storm) with solar and geomagnetic activities as well as the chemical and dynamic processes with thermosphere in the mid-latitudes. The ionospheric storm is not easy to predict owing to its difficult mechanism, and the real-time GPS TEC monitoring may be useful to follow ionospheric response to solar and geomagnetic storms. Korea Astronomy & Space Science Institute has continuously monitor GPS TEC over Korea Peninsula in near real-time of 10 minutes to watch activities. In this presentation, we will report the variation of GPS TEC over Daejeon and JeJu in Korea during the period of solar flare eruption and geomagnetic storm events in 2011. These events in 2011 will be compared with the event in October 2003 and November 2004.

  • PDF

GPS TEC 관측자료로 살펴본 우리나라 전리층 특성에 관한 보고

  • Jeong, Jong-Gyun;Lee, Ji-Na
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.125.2-125.2
    • /
    • 2012
  • 최근 아태지역 국제민간항공기구는 GPS의 항공이행을 위한 전리층 연구 태스크포스(Ionospheric Study Task Force, ISTF)를 결성하였다. 안전한 GPS 항공이행을 위해서는 지역적 그리고 전지구적 전리층 특성을 파악한 후 이를 기반으로 실시간 전리층 모델이 필요하다. 한국천문연구원은 ISTF의 전리층 변화 특성 분석에 관한 기술분과를 담당하고 있으며 GPS 항공이행 실시간 전리층 모델개발을 위한 아태지역 전리층 분석방법 및 표준규범을 수립하고 있다. 아태지역 전리층 연구에 앞서 우리나라 전리층 특성을 파악하고자 한국천문연구원이 1998년부터 운영 중에 있는 대전 국제 GPS 기준점으로부터 관측된 자료를 이용하여 태양 11년 주기에 해당하는 GPS TEC를 분석하였다. 또한, 해당 기간 동안 우리나라 양/음 전리층 폭풍 발생 빈도에 관한 통계분석을 실시하였다. 본 발표에서는 GPS TEC의 태양 극자외선 플럭스와 10.7 cm 태양전파와의 상관관계 차이점, 연변화 및 계절적 변화 그리고 이에 대한 시간 변화에 대해 보고한다. 또한 GPS TEC의 27일 주기 변화에 특성에 대해 토의하며, 우리나라 상공 전리층 폭풍의 계절적 분포에 대해 논의할 것이다. 끝으로 최근 한국천문연구원 GPS TEC 상시 관측자료에 나타난 태양 및 지자기 폭풍에 따른 전리층 폭풍 사례에 대해 고찰하고 이를 바탕으로 고층대기 연구가 GPS로 대표되는 현업에 적용되는 최근 현황을 소개할 것이다.

  • PDF

Statistics of Ionospheric Storms Using GPS TEC Measurements Between 2002 and 2014 in Jeju, Korea

  • Chung, Jong-Kyun;Choi, Byung-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.335-340
    • /
    • 2015
  • Using the Total Electron Content (TEC) data from the Global Navigation Service System (GNSS) site in Jeju, operated by the Korea Astronomy and Space Science Institute (geographic location: $33.3^{\circ}N$, $126.5^{\circ}E$; geomagnetic location: $23.6^{\circ}N$) for 2002-2014 in Korea, the results of the statistical analysis of positive and negative ionospheric storms are presented for the first time. In this paper, ionospheric storms are defined as turbulences that exceed 50% of the percentage differential Global Positioning System (GPS) TEC ratio (${\Delta}TEC$) with monthly median GPS TEC. During the period of observations, the total number of positive ionospheric storms (${\Delta}TEC$ > 50%) was 170, which is greater than five times the number of negative ionospheric storms (${\Delta}TEC$ < - 50%) of 33. The numbers of ionospheric storms recorded during solar cycles 23 and 24 were 134 and 69, respectively. Both positive and negative ionospheric storms showed yearly variation with solar activity during solar cycle 23, but during solar cycle 24, the occurrence of negative ionospheric storms did not show any particular trend with solar activity. This result indicates that the ionosphere is actively perturbed during solar cycle 23, whereas it is relatively quiet during solar cycle 24. The monthly variations of the ionospheric storms were not very clear although there seems to be stronger occurrence during solstice than during equinox. We also investigated the variations of GPS positioning accuracy caused by ionospheric storms during November 7-10, 2004. During this storm period, the GPS positioning accuracies from a single frequency receiver are 3.26 m and 2.97 m on November 8 and 10, respectively, which is much worse than the quiet conditions on November 7 and 9 with the accuracy of 1.54 m and 1.69 m, respectively.

A DETECTION STUDY OF THE IONOSPHERIC TOTAL ELECTRON CONTENTS VARIATIONS USING GPS NETWORK (GPS 기준국망을 이용한 전리층 총전자수 변화 검출 연구)

  • Choi, Byung-Kyu;Park, Jong-Uk;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.269-274
    • /
    • 2007
  • We established a regional ionospheric model for investigating ionospheric TEC (Total Electron Contents) variations over the Korean Peninsula during major geomagnetic storms. In order to monitor the ionospheric TEC variations, we used nine permanent GPS reference stations uniformly distributed in South Korea operated by the Korea Astronomy and Space Science Institute (KASI). The cubic spline smoothing (CSS) interpolation method was used to analyze the characteristics of the ionospheric TEC variations. It has been found that variations of TEC over the Korean Peninsula increase when a major geomagnetic storm occurred on November 20, 2003. The TEC has increased about one and a half of those averaged quite days at the specific time during a geomagnetic storm. It has been indicated that the KASI GPS-derived TEC has a correlation with the geomagnetic storm indices (eq. Kp and Dst indices).

GPS Receiver and Satellite DCB Estimation using Ionospheric TEC (전리층 TEC를 이용한 GPS 수신기와 위성의 DCB 추정)

  • Choi, Byung-Kyu;Cho, Sung-Ki;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.221-228
    • /
    • 2009
  • We estimated the receiver and satellite differential code bias(DCB) based on the ionospheric total electron content(TEC) estimation method. The GPS network which has been operated by the Korea Astronomy and Space Science Institute(KASI) was designed to calculate TEC. The receiver and satellite DCB values were obtained from the weighted least square method with time interval for one hour. The results represented that the receiver DCB values are mostly varying within ${\pm}2m$ meter and are derived comparatively stable within three days. The estimated mean values of the satellite DCB show the maximum and minimum values of 4.09 nano-second(ns), -6.28ns respectively. We could detect great variations of TEC over 9 TECU difference at any time when the DCB sets were applied to TEC estimation.

THE MEASUREMENT OF THE IONOSPHERIC TOTAL ELECTRON CONTENT USING P-CODE OF GPS (GPS의 P 코드를 이용한 이온층의 총전자수 측정)

  • 서윤경;박필호;박종욱;이동훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.71-80
    • /
    • 1994
  • It is generally known that the measurement of the ionospheric total electron content(TEC) by GPS can more accurately monitor the broader area of the ionosphere than other current methods. \Ve measured the TEC along a slant path considering the arrival time differences of P-code which is transmitted from GPS satellites with the modulation on two L-band carrier frequencies, L1 (1574.42MHz) and L2 (1227.60MHz). Under the assumptions that the ionosphere is uniformly distributed and its average height is 350km, we transformed the slant TEC to the vertical TEC at the point that the line-of-sight direction to GPS satellite cut across the average height of the ionosphere. Because there is no dual frequency P-code GPS receiver in Korea, we used the data observed at the TAIW GPS station ($N25^{\circ},E121.5^{\circ}$) in Taiwan which is one of the core stations in International GPS and Geodynamics Services (IGS). The TEC values obtained in this work showed a typical daily variation of the ionosphere which is high in the daytime and low in the nighttime. Our results are found to be consistent with the SOLAR-DAILY data of NOAA and the Klobuchar's model for the ionospheric correction of GPS. In addition, in the cornparision with SOLAR-DAILY data, we estimated the precision of our TEC measurement as 2 TEC.

  • PDF