• Title/Summary/Keyword: GPS signal

Search Result 764, Processing Time 0.036 seconds

Analysis of the GPS Signal Generator for the Live GPS Signal Synchronization (Live GPS L1과 동기된 항법신호 생성 분석)

  • Kim, Taehee;Sin, Cheonsig;Kim, Jaehoon
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.71-76
    • /
    • 2015
  • In this paper, we developed the hardware GPS signal generator for generating a satellite navigation signal synchronized with Live GPS signal signals and analyzed the performance of signal genterator thorough the experiment For a hardware implementation of the GPS navigation signal synchronous generator, the GPS module may receive a GPS signal in order to generate the same signal as the operation that is transmitted from the current GPS satellite and the synchronized time information and the GPS satellites using the Novatel Inc. OEMStar.In. For generating the GPS synchronization signal, the GPS navigation signal generator was adjusted to a reference clock using the GPS clock synchronous information provided by the GPS receiving module and GPS signals also generated in consideration of the delay of the internal hardware of the generator. In this paper, we analyzed the effect of the receiver via the signal switching between Live GPS signal and generates a signal to measure the performance of the GPS navigation synchronization signal generator. It was confirmed that by the seamless operation of the signal even the moment that the switching of the generated signal from Live GPS signal has occurred through experimentation.

Design of Software GPS L2 Civil Signal Generator (ICCAS 2003)

  • Seo, Sam-Suk;Cho, Deuk-Jae;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2632-2635
    • /
    • 2003
  • This paper designs a software signal generator for the new GPS L2 civil signal. The CM/CL code and the message structure of L2CS described in GPS ICD PPIRN-200C-007 are used in designing the signal generator. The output of the GPS signal generator is designed as the sampled IF data with the sampling frequency 5.7MHz and stored in the binary data format. By analyzing both the spectrum characteristics of the output signal and the correlation properties of the CM/CL code, the validation of the designed GPS signal generator is shown. It should be mentioned that the modeling of the GPS satellite constellation and the error sources remains for implementing the software space segment of GPS.

  • PDF

Improving TDOA Measurement Accuracy for Software GPS Receiver (소프트웨어 GPS 수신기를 위한 의사거리 정밀도 향상 기법)

  • Hong, Jin-Seok;Kim, Hwi;Ji, Kyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.97-97
    • /
    • 2000
  • In this paper, a signal processing algorithm for software GPS receiver is proposed. The signal processor takes snapshot of the sampled If signal from the RF section of the GPS receiver. All the processing for code and carrier tracking and correlation are implemented using the digital signal processing techniques. In order to achieve fast code acquisition, correlation of the incoming GPS signal is performed using the FFT method, After code acquisition, to reduce the Doppler shift effect and increase the accuracy, the interpolation or the tracking are performed. The performance of the proposed processing algorithm is first evaluated using matlab/simulink. A signal acquisition board for sampling and logging GPS IF signal form the Mitel GPS RF chip set is constructed. In order to analyze the performance of the designed algorithm the experiments are performed and the results are analyzed.

  • PDF

Implementation of 4-Channel Fake GPS Signal Generator (4 채널 GPS Fake 신호 발생기 구현)

  • Kwon, Keum-Cheol;Yang, Cheol-Kwan;Shim, Duk-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1306-1307
    • /
    • 2015
  • As a basic research for the detection of GPS spoofing signal we study to generate a GPS fake signal which can mislead GPS receivers, and show that the fake signal is generated and transmitted through a pseudolite and the GPS receivers produce a wrong position as designated in the fake signal.

  • PDF

Narrow-Band Jamming Signal Cancellation Algorithm for GPS Receivers (GPS 수신기에서 적용 가능한 효과적인 협대역 전파방해 신호 제거 알고리즘)

  • Lee, In-seok;Oh, Seong-jun;Han, Jin-hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.859-867
    • /
    • 2016
  • The Global Positioning System is a navigation system that has been developed by the United States for military use. Currently, many countries, including the Republic of Korea, use GPS for civilian and military uses. However, as useful as it is, GPS is vulnerable to its Jamming signal, as the strength of the signal from satellites is very weak. In this paper, a novel jamming signal detection and cancellation method is proposed when a narrow-band jamming signal is included in the GPS received signal. At the GPS receiver, the received signal is transformed to a frequency domain sample by Fast Fourier Transform. In order to suppress the Spectral Leakage, the Blackman-Harris window is used. The proposed jamming signal cancellation algorithm will find the frequency sample with maximum power and null the maximum sample in addition to some lateral samples. If the GPS receiver is designed with FFT of size 128 to 512, it is shown that 42 samples are optimal to cancel the narrow-band jamming signal.

GPS AOA Choosing Algorithm in Environment of High-Power Interference Signals (고 전력 간섭 환경에서의 GPS AOA 선택 알고리즘)

  • Hwang, Suk-Seung
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.649-656
    • /
    • 2012
  • The Global Positioning System (GPS) is widely utilized for commercial and military applications to estimate the location of the user or object. The GPS suffers from various intentional or unintentional interferers and it requires estimating the accurate angle-of-arrival (AOA) of the GPS signal to suppress interference signals and to efficiently detect GPS data. Since the power of GPS signal is very low comparing with the noise and interference signals, it is extremely difficult to estimate GPS AOA before despreading. Although AOA of GPS signal is usually estimated after despreading, it requires choosing the GPS AOA among results of AOA estimation because they include AOAs of interference and GPS signals when existing high-power interferers. In this paper, we propose the efficient choosing algorithm of the GPS signal among the estimated AOAs. The proposed algorithm compares the estimated results before despreading and after despreading for choosing AOA of GPS signal. Computer simulation examples are presented to illustrate the performance of the proposed algorithm.

Galileo BOC(1,1) Signal Tracking using GPS/Galileo Software Receiver

  • Lim, Deok-Won;Park, Chan-Sik;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.285-289
    • /
    • 2006
  • In this paper, a design and implementation of GPS/Galileo software receiver is given. As a GPS receiver, it is able to perform every function of receiver such as acquisition, code and carrier tracking, navigation bit extraction, navigation data decoding, pseudorange calculations, and position calculations. A method to acquire and track the Galileo BOC(1,1) signal is also required because the correlation of BOC(1,1) signal has multiple peaks different from that of GPS signal. Therefore, a method to detect the main-peak in correlation function of BOC signal is required to avoid false acquisition. In this paper, very-early, very late correlation is implemented to track the correct main peak. The performance of implemented GPS/Galileo software receiver with BOC(1,1) signal tracking feature is evaluated with GPS/Galileo IF signal generator.

  • PDF

Analysis of Performance of Spoofing Detection Algorithm in GPS L1 Signal (GPS L1 기만신호 검출 알고리즘 성능 분석)

  • Kim, Taehee;Kim, Jaehoon;Lee, Sanguk
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.29-35
    • /
    • 2013
  • In this paper, we investigate the type and detection methode of spoofing attack, and then analyze the performance of spoofing detection algorithm in GPS L1 signal through the simulation. Generally spoofer is different from the jammer, because the receiver can be operated and not. In case of spoofing the GPS receiver is hard to recognize the spoofing attack and can be operated normally without stopping because the spoofing signal is the mimic GPS signal. To evaluate the performance of spoofing detection algorithm, both the software based spoofing and GPS signal generator and the software based GPS receiver are implemented. In paper, we can check that spoofing signal can affect to the DLL and PLL tracking loop because code delay and doppler frequency of spoofing. The spoofing detection algorithm has been implemented using the pseudorange, signal strength and navigation solution of GPS receiver and proposed algorithm can effectively detect the spoofing signal.

Analysis of the GPS Meaconing Signal Generator for the Live GPS L1 Signal (Live GPS L1 재방송 기만신호 생성 분석)

  • Kim, Taehee;Sin, Cheonsig
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • In this paper, we developed the hardware GPS signal generator for generating a GPS L1 meaconing signal with Live GPS signal signals and analyzed the performance of meaconing signal generator thorough the experiment. Deception of the signal, such as a re-broadcast, it is an object of the user to provide false information so as not to receive location information and accurate time. The signal just rebroadcast has the features that can be easily deceive the receiver via a delay of no received signal to the signal processing through an antenna. In this paper, the hardware for generating a signal only these rebroadcast designed and manufactured, by re-sending the received Live GPS signals, to confirm the effect of the receiver. The maximum delay time is possible up to about 2.6msec, also, has been successfully tested to be moved to the position of re-broadcasting based on maturity antenna the position of the receiver through a spaced antenna.

Performance Comparison of Anti-Spoofing Methods using Pseudorange Measurements (의사거리 측정치를 이용하는 기만신호 검출 기법의 성능 비교)

  • Cho, Sung-Lyong;Shin, Mi-Young;Lee, Sang-Jeong;Park, Chan-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.793-800
    • /
    • 2010
  • GPS spoofing is an intentional interference which uses the mimic GPS signals to fake the receivers. The generic GPS receiver is hard to recognize the spoofing signal because the spoofer generates the fake signals as close as possible to the GPS signal. So the spoofer can do critical damage to public operations. This paper introduces a basic concept of spoofing and analyzes the effect of the spoofing signal to the GPS receiver. Also for stand-alone GPS receivers, two anti-spoofing methods are implemented : RAIM based method and the SQM based method. To evaluate the performance of anti-spoofing method, the software based spoofing signal generator and GPS signal generator are implemented. The performance of the anti-spoofing methods obtained using the output of the software based GPS receiver shows that SQM based method is more effective when multiple spoofing signals exist.