• Title/Summary/Keyword: Ga%24_2%24O%24_3%24

Search Result 46, Processing Time 0.031 seconds

Single Crystal Structure of Pure Inorganic Nanocomposite $[GaO_4Al_12(OH)_24(H_2O)_12][Al(OH)_6Mo_6O_{18}]_2(OH)$·$30H_2O$

  • Son, Jeong Ho;Gwon, Yeong Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1224-1230
    • /
    • 2001
  • Single crystals of nanocomposite [GaO4Al12(OH)24(H2O)12][Al(OH)6Mo6O18]2(OH)${\cdot}$30H2O, 2, were obtained by the reaction between [GaO4Al12(OH)24(H2O)12]7+ and [Mo7O24]6- clusters in an aqueous solution, analogously to the [AlO4Al12(OH)24(H2O)12][Al(OH)6Mo6O18]2(OH)${\cdot}$29.5H2O nanocomposite, 1. The crystal structure of 2 was determined by single crystal x-ray diffraction; space group $C2}c$ (No. 15), a = 27.418(2) $\AA$, b = 15.647(2) $\AA$, c = 23.960(4) $\AA$, $\beta$ = $102.850(9)^{\circ}$, V = 10,021.5(20) $\AA3$ , Z = 4. Detailed analysis of the structural data show that the clusters are held by intimate hydrogen bondings of the surface O2- and OH- groups of the clusters as well as the ionic interactions between the oppositely charged cluster ions.

A Study on Phosphor Synthetic and Low Temperature Photoluminescence Spectrum (저온 photoluminescence 스펙트럼 및 형광체 합성에 관한 연구)

  • Kim, Soo-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.10-16
    • /
    • 2010
  • In this paper, synthesis here Mn add to Ar injection the state and a vacuum an atomosphere $ZnGa_2O_4$ : Mn, ZnO and $Ga_2O_3$ power of 1 : 1 mole ratio mixture. Manufacture a close examination of oxygen a component variation luminescence a specific character reach an in fluence of $ZnGa_2O_4$ : Mn, luminescence spectrum observation also an explanation of Mn site symmetry and at luminescence spectrum reach an influence from low temperature photoluminescence spectrum.

Mössbauer Study of Tb2Bi1GaxFe5-xO12(x=0, 1) (Tb2Bi1GaxFe5-xO12(x=0, 1)의 뫼스바우어 분광연구)

  • Park, Il-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.67-70
    • /
    • 2008
  • $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) fabricated by sol-gel and vacuum sealed annealing process. $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) have been studied by x-ray diffraction(XRD), vibrating sample magnetometer, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structures were found to be a cubic garnet structure with space group Ia3d. The determined lattice constants $a_0$ of x = 0, and 1 are $12.497\AA$, and $12.465\AA$, respectively. The distribution of gallium and iron in $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$ is studied by Rietveld refinement. Based on Rietveld refinement results, the terbium and bismuth ions occupy the 24c site, iron ions occupy the 24d, l6a site, and nonmagmetic gallium ions occupy the 16a site. In order to verify the magnetic site occupancy of iron and gallium, we have taken $M\ddot{o}ssbauer$ spectra for $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) at room temperature. From the results of $M\ddot{o}ssbauer$ spectra analysis, the absorption area ratios of Fe ions for $Tb_2Bi_1Fe_5O_{12}$ on 24d and 16a sites are 60.8 % and 39.2 %, respectively, and the absorption area ratios of Fe ions for $Tb_2Bi_1Fe_5O_{12}$ on 24d and 16a sites are 74.7 % and 25.3 %, respectively. It is noticeable that all of the nonmagnetic Ga atoms occupy the 16a site by vacuum annealing process.

Properties of ZnO:Ga thin films deposited by RF magnetron sputtering under various RF power

  • Kim, Deok Kyu;Kim, Hong Bae
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.242-244
    • /
    • 2015
  • ZnO:Ga thin films were deposited by RF magnetron sputtering technique from ZnO (3 wt.% $Ga_2O_3$) target onto glass substrates under various RF power. The influence of RF power on the structural, electrical, and optical properties of ZnO:Ga thin films was investigated by X-ray diffraction, atomic force microscopy, Hall method and optical transmission spectroscopy. As the RF power increases from 50 to 110W, the crystallinity is deteriorated, the root main square surface roughness is decreased and the sheet resistance is increased. The increase of sheet resistance is caused by decreasing carrier concentration due to interstitial Ga ion. All films are transparent up to 80% in the visible wavelength range and the adsorption edge is a red-shift with increasing RF power.

Synthesis of Ga2O3 powders by precipitation method (침전법을 이용한 Ga2O3 분말의 합성)

  • Jung, Jong-Yeol;Kim, Sang-Hun;Kang, Eun-Tae;Kim, Jin-Ho;Han, Kyu-Sung;Hwang, Kwang-Teak;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • In this study, we investigated synthesis and characteristics of gallium oxide ($Ga_2O_3$) powders prepared by precipitation method. $Ga_2O_3$ powders were synthesized using $Ga(NO_3)_3$ as a starting material and $NH_4OH$ as a precipitant. The oxidation temperature of $Ga(OH)_3$ and phase transition temperature of $Ga_2O_3$ was revealed using TG-DSC analysis. The crystal structural change of $Ga_2O_3$ powders was investigated by XRD analysis. The morphologies and size distributions of $Ga_2O_3$ particles were analyzed using SEM.

Structural and Electrical Properties of Ga-doped ZnO-SnO2 Films (Ga이 첨가된 ZnO-SnO2막의 구조적 및 전기적 특성)

  • Park, Ki-Cheol;Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.641-646
    • /
    • 2011
  • Ga-doped ZnO-$SnO_2$ (ZSGO) films were deposited by rf magnetron sputtering and their structural and electrical properties were investigated. In order to fabricate the target for sputtering, the mixture of ZnO, $SnO_2$ (1:1 weight ratio) and $Ga_2O_3$ (3.0 wt%) powder was calcined at $800^{\circ}C$ for 1 h. The substrate temperature was varied from room temperature to $300^{\circ}C$. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The optical transmittances of the films were measured and the optical energy band gaps were obtained from the absorption coefficients. The resistivity variation with substrate temperature was measured. Auger electron spectroscopy was employed to find the atomic ratio of Zn, Sn, Ga and O in the film deposited at room temperature. ZSGO films exhibited the optical transmittance in the visible region of more than 80% and resistivity higher than $10\;{\Omega}cm$.

Effect of Precipitants and Precipitation Conditions on Synthesis of β-Ga2O3 Powder (침전제의 종류 및 침전 공정의 변화가 β-Ga2O3 분말 합성에 미치는 영향)

  • Hwang, Su Hyun;Choi, Young Jong;Ko, Jeong Hyun;Kim, Tae Jin;Jeon, Deok Il;Cho, Woo Suk;Han, Kyu Sung
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.214-220
    • /
    • 2014
  • In this research, a precipitation method was used to synthesize ${\beta}-Ga_2O_3$ powders with various particle morphologies and sizes under varying precipitation conditions, such as gallium nitrate concentration, pH, and aging temperature, using ammonium hydroxide and ammonium carbonate as precipitants. The obtained powders were characterized in detail by XRD, SEM, FT-IR, and TG-DSC. From the TG-DSC result, GaOOH phase was transformed to ${\beta}-Ga_2O_3$ at around $742^{\circ}C$, and weight loss percent was about 14 % when $NH_4OH$ was used as a precipitant. Also, ${\beta}-Ga_2O_3$ formed at $749^{\circ}C$ and weight loss percent was about 15 % when $(NH)_2CO_3$ was used as a precipitant. XRD results showed that the obtained $Ga_2O_3$ had pure monoclinic phase in both cases. When $(NH)_2CO_3$ was used as a precipitant, the particle shape changed and became irregular. The range of particle size was about $500nm-4{\mu}m$ based on various concentrations of gallium nitrate solution with $NH_4OH$. The particle size was increased from $1-2{\mu}m$ to $3-4{\mu}m$ and particle shape was changed from spherical to bar type by increasing aging temperature over $80^{\circ}C$.

Effects of Seed Storage Methods and GA3 Application on Seed Germination and Seedling Growth of Solanum lyratum Thunb. (종자저장방법 및 GA3처리가 배풍등 종자 발아와 유묘 생육에 미치는 영향)

  • Lee, Su Gwang;Kim, Hyo Yun;Ku, Ja Jung
    • Korean Journal of Plant Resources
    • /
    • v.27 no.4
    • /
    • pp.365-370
    • /
    • 2014
  • This study was conducted to determine the effects of seed storage methods ($-20^{\circ}C$, stratification, $2^{\circ}C$ dry, $2^{\circ}C$ wet and room temperature) and $GA_3$ application (control, $dH_2O$, 10, 100, 1000 ppm) on seed germination and seedling growth of S. lyratum. As a result seed germination rate of S. lyratum was the highest at 91% when seeds were stored at room temperature and then soaked for 24 hours in $GA_3$ 10 ppm. And seedlings of S. lyratum showed the best quality when seed were stored at $2^{\circ}C$ dry and then soaked for 24 hours in $GA_3$ 1000 ppm, with the growth characteristics of plant height (47 mm), number of leaves (8), leaf width (12 mm), leaf length (19 mm), fresh weight (aerial/root part; 471/476 mg), dry weight (aerial/root; 106/41 mg) and seedling quality indices (106). Therefore, S. lyratum seed were stored at $2^{\circ}C$ dry, and then soaked for 24 hours in $GA_3$ 1000 ppm, seed germination rate was more than 80% and production of superior quality container seedlings.

Optimal Design of GaN Power MOSFET Using Al2O3 Gate Oxide (Al2O3 게이트 절연막을 이용한 GaN Power MOSFET의 설계에 관한 연구)

  • Nam, Tae-Jin;Chung, Hun-Suk;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.713-717
    • /
    • 2011
  • This paper was carried out design of 600 V GaN power MOSFET Modeling. We decided trench gate type one for design. we carried out device and process simulation with T-CAD tools. and then, we have extracted optimal device and process parameters for fabrication. we have analysis electrical characteristics after simulations. As results, we obtained 600 V breankdown voltage and $0.4\;m{\Omega}cm^2ultra$ low on resistance. At the same time, we carried out field ring simulation for obtaining high voltage.