• Title/Summary/Keyword: GaMnAs

Search Result 121, Processing Time 0.031 seconds

The Effects of Codoping of Be and Mg on Incorporation of Mn in GaAs

  • Yu, Fucheng;Gao, Cunxu;Parchinskiy, P.B.;Chandra, Sekar.P.V.;Kim, Do-Jin;Kim, Chang-Soo;Kim, Hyo-Jin;Ihm, Young-Eon
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.444-449
    • /
    • 2008
  • Samples of GaMnAs, GaMnAs codoped with Be, and GaMnAs simultaneously codoped with Be and Mg were grown via low-temperature molecular beam epitaxy (LT-MBE). Be codoping is shown to take the Ga sites into the lattice efficiently and to increase the conductivity of GaMnAs. Additionally, it shifts the semiconducting behavior of GaMnAs to metallic while the Mn concentration in the GaMnAs solid solution is reduced. However, with simultaneous codoping of GaMnAs with Be and Mg, the Mn concentration increases dramatically several times over that in a GaMnAs sample alone. Mg and Be are shown to eject Mn from the Ga sites to form MnAs and MnGa precipitates.

Ferromagnetism and Magnetotransport of Be-codoped GaMnAs (Be-codoped GaMnAs의 상온 강자성 및 자기 수송 특성)

  • Im, W.S.;Yu, F.C.;Gao, C.X.;Kim, D.J.;Kim, H.J.;Ihm, Y.E.;Kim, C.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.213-218
    • /
    • 2004
  • Be-codoped GaMnAs layers were systematically grown via molecular beam epitaxy with varying Mn- and Be-flux. Mn flux was controlled to cover from solid solution type GaMnAs to precipitated GaMnAs. Two Be flux were chosen to exhibit semiconducting and metallic resistivity in the grown layers. The structural, electrical, and magnetic properties of GaAs:(Mn, Be) were investigated. The lightly Be-codoped GaMnAs layers showed ferromagnetism at room temperature, but did not reveal magnetotransport due to small magneto-resistance and high resistance of the matrix. However, room temperature magnetotransport could be observed in the degenerate Be-codoped GaMnAs layers, and which was assisted by the high conductivity of the matrix. The Be-codoping has promoted segregation of new ferromagnetic phase of MnGa as well as MnAs.

Ferromagnetism of Chalcopyrite AlGaAs2:Mn Quaternary Alloys (4원 합금 AlGaAs2:Mn의 강자성)

  • Kang, Byung-Sub
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.666-671
    • /
    • 2020
  • The electronic structure and magnetic properties of chalcopyrite (CH) AlGaAs2 with dopant Mn at 3.125 and 6.25 % concentrations are investigated using first-principles calculations. The CH AlGaAs2 alloy is a p-type semiconductor with a small band-gap. The AlGaAs2:Mn shows that the ferromagnetic (FM) state is the most energetically favorable one. The Mn-doped AlGaAs2 exhibits FM and strong half-metallic ground states.The spin polarized Al(Ga,Mn)As2 state (Al-rich system) is more stable than the (Al,Mn)GaAs2 state (Ga-rich system), which has a magnetic moment of 3.82mB/Mn. The interaction between Mn-3d and As-4p states at the Fermi level dominates the other states.The states at the Fermi level are mainlyAs-4p electrons, which mediate strong interaction between the Mn-3d and As-4p states. It is noticeable that the FM ordering of dopant Mn with high magnetic moment originates from the As(4p)-Mn(3d)-As(4p) hybridization, which is attributed to the partially unfilled As-4pbands. The high FM moment of Mn is due to the double-exchange mechanism mediated by valence-band holes.

Room-temperature Magnetotransport in Degenerately Doped GaAs:(Mn,Be) by Virtue of the Embedded Ferromagnetic Clusters

  • Yu, Fu-Cheng;Kim, Do-Jin;Kim, Hyo-Jin;Ihm, Young-Eon
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.103-107
    • /
    • 2005
  • Magnetotransport is a prerequisite to realization of electronic operation of spintronic devices and it would be more useful if realized at room temperature. The effects of Be codoping on GaMnAs on magnetotransport were investigated. Mn flux was varied for growth of precipitated GaMnAs layers under a Be flux for degenerate doping via low-temperature molecular beam epitaxy. Magnetotransport as well as ferromagnetism at room temperature were realized in the precipitated GaAs:(Mn,Be) layers. Codoping of Be was shown to promote formation of MnGa clusters, and annealing process further stabilized the cluster phases. The room-temperature magnetic properties of the layers originate from the ferromagnetic clusters of MnGa and MnAs embedded in GaAs. The degenerately doped metallic GaAs matrix allowed the visualization of the magnetotransport through anomalous Hall effect.

Magnetotransport of Be-doped GaMnAs (GaMnAs의 Be 병행 도핑에 의한 자기 수송 특성 연구)

  • Im W. S.;Yoon T. S.;Yu F. C.;Gao C. X.;Kim D. J.;Ibm Y. E.;Kim H. J.;Kim C. S.;Kim C. O.
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • Motivated by the enhanced magnetic properties of Mg-codoped GaMnN ferromagnetic semiconductors, Be-codoped GaMnAs films were grown via molecular beam epitaxy with varying Mn flux at a fixed Be flux. The structural, electrical, and magnetic properties were investigated. GaAs:(Mn,Be) films showed metallic behavior while GaAs:Mn films showed semiconducting behavior as determined by the temperature dependent resistivity measurements. The Hall-effect measurements with varying magnetic field showed clear anomalous Hall effect up to room temperature proving ferromagnetism and magnetotransport in the GaAs:(Mn,Be) films. Planar Hall resistance measurement also confirmed the properties. The dramatic enhancement of the Curie temperature in GaMnAs system was attributed to Be codoping in the GaMnAs films as well as MnAs precipitation.

A Study on Growth and Characterization of Magnetic Semiconductor GaMnAs Using LT-MBE (저온 분자선 에피택시법을 이용한 GaMnAs 자성반도체 성장 및 특성 연구)

  • Park Jin-Bum;Koh Dongwan;Park Young Ju;Oh Hyoung-taek;Shinn Chun-Kyo;Kim Young-Mi;Park Il-Woo;Byun Dong-Jin;Lee Jung-Il
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.235-238
    • /
    • 2004
  • The LT-MBE (low temperature molecular beam epitaxy) allows to dope GaAs with Mn over its solubility limit. A 75 urn thick GaMnAs layers are grown on a low temperature grown LT-GaAs buffer layer at a substrate temperature of $260^{\circ}C$ by varying Mn contents ranged from 0.03 to 0.05. The typical growth rate for GaMnAs layer is fixed at 0.97 $\mu\textrm{m}$/h and the V/III ratio is varied from 25 to 34. The electrical and magnetic properties are investigated by Hall effect and superconducting quantum interference device(SQUID) measurements, respectively. Double crystal X-ray diffraction(DCXRD) is also performed to investigate the crystallinity of GaMnAs layers. The $T_{c}$ of the $Ga_{l-x}$ /$Mn_{x}$ As films grown by LT-MBE are enhanced from 38 K to 65 K as x increases from 0.03 into 0.05 whereas the $T_{c}$ becomes lower to 45 K when the V/III ratio increases up to 34 at the same composition of x=0.05. This means that the ferromagnetic exchange coupling between Mn-ion and a hole is affected by the growth condition of the enhanced V/III ratio in which the excess-As and As-antisite defects may be easily incorporated into GaMnAs layer.

Growth and Magnetic Characteristics of MnSb Epilayer by Hot-Wall Epitaxy (Hot-Wall Epitaxy에 의한 MnSb 박막의 성장과 자기적 특성)

  • Lee, Man-Young
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.2
    • /
    • pp.151-162
    • /
    • 2004
  • MnSb layers were grown on GaAs(100), (111)A and (111)B substrates by hot wall epitaxy under various growth conditions. Growth condition dependence of structural properties of the layers was examined. The growth direction and structural properties of MnSb/GaAs(100) depend on Sb source and substrate temperatures. The smooth MnSb(10.1)/GaAs(100) interface was obtained under the appropriate growth condition. On the other hand, MnSb(00.1) layers were grown on GaAs(111) substrates. The quality of the layers on (111)B was superior to that on GaAs(111)A, but degraded as in increasing Sb source temperature during the growth. The $Mn_2Sb$ domain was generated in the layers grown under conditions of low Sb source temperature and high substrate temperature on GaAs(111) substrates.

  • PDF

Activation Energy of 69Ga, 71Ga, and 75As Nuclei in GaAs:Mn2+ Single Crystal

  • Yeom, Tae Ho;Lim, Ae Ran
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.116-120
    • /
    • 2014
  • The spin-lattice relaxation time, $T_1$, for $^{69}Ga$, $^{71}Ga$, and $^{75}As$ nuclei in GaAs:$Mn^{2+}$ single crystals was measured as a function of temperature. The values of $T_1$ for $^{69}Ga$, $^{71}Ga$, and $^{75}As$ nuclei were found to decrease with increasing temperature. The $T_1$ values in GaAs:$Mn^{2+}$ crystal are similar to those in pure GaAs crystal. The calculated activation energies for the $^{69}Ga$, $^{71}Ga$, and $^{75}As$ nuclei are 4.34, 4.07, and 3.99 kJ/mol. It turns out that the paramagnetic impurity effect of $Mn^{2+}$ ion doped in GaAs single crystal was not strong on the spin-lattice relaxation time.

Half-metallic Ferromagnetism for Mn-doped Chalcopyrite (Al,Ga)As Semiconductor (Chalcopyrite (Al,Ga)As 반도체와 Mn의 반금속 강자성)

  • Kang, B.S.;Song, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.49-54
    • /
    • 2020
  • We studied the electronic and magnetic properties for the Mn-doped chalcopyrite (CH) AlAs, GaAs, and AlGaAs2 semiconductor by using the first-principles calculations. The chalcopyrite AlGaP2, AlGaAsP, and AlGaAs2 compounds have a semiconductor characters with a small band-gap. The interaction between Mn-3d and As-4p states at the Fermi level dominate rather than the other states. The ferromagnetic ordering of dopant Mn with high magnetic moment is induced due to the Mn(3d)-As(4p) strong coupling, which is attributed by the partially filled As-4p bands. The holes are mediated with keeping their 3d-electrons, therefore the ferromagnetic state is stabilized by this double-exchange mechanism. We noted that the ferromagnetic state with high magnetic moment is originated from the hybridized As(4p)-Mn(3d)-As(4p) interaction mediated by the holes-carrier.

Emission of Spin-polarized Light in Nitride-based Spin LEDs with Room-temperature Ferromagnetic (Ga,Mn)N Layer (상온 강자성 (Ga,Mn)N 박막을 이용한 질화물계 스핀 발광소자의 스핀편극된 빛의 발광)

  • Ham, Moon-Ho;Myoung, Jae-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1056-1060
    • /
    • 2005
  • We investigated the fabrication and characteristics of the nitride-based spin-polarized LEDs with room-temperature ferromagnetic (Ga,Mn)N layer as a spin injection source. The (Ga,Mn)N thin films having room-temperature ferromagnetic ordering were found to exhibit the negative MR and anomalous Hall resistance up to room temperature, revealing the existence of spin-polarized electrons in (Ga,Mn)N films at room temperature. The electrical characteristics in the spin LEDs did not degraded in spite of the insertion of the (Ga,Mn)N layer into the LED structure. In EL spectra of the spin LEDs, it is confirmed that the devices produce intense EL emission at 7 K as well as room temperature. These results are expected to open up new opportunities to realize room-temperature operating semiconductor spintronic devices.