• 제목/요약/키워드: GaN power device

검색결과 106건 처리시간 0.029초

전기차 응용을 위한 수직형 GaN 전력반도체 기술 동향 (Technical Trends in Vertical GaN Power Devices for Electric Vehicle Application)

  • 이형석;배성범
    • 전자통신동향분석
    • /
    • 제38권1호
    • /
    • pp.36-45
    • /
    • 2023
  • The increasing demand for ultra-high efficiency of compact power conversion systems for electric vehicle applications has brought GaN power semiconductors to the fore due to their low conduction losses and fast switching speed. In particular, the development of materials and core device processes contributed to remarkable results regarding the publication of vertical GaN power devices with high breakdown voltage. This paper reviews recent advances on GaN material technology and vertical GaN power device technology. The GaN material technology covers the latest technological trends and GaN epitaxial growth technology, while the vertical GaN power device technology examines diodes, Trench FETs, JFETs, and FinFETs and reviews the vertical GaN PiN diode technology developed by ETRI.

5G 이동통신을 위한 GaN RF 전자소자 및 집적회로 기술 동향 (Technical Trends in GaN RF Electronic Device and Integrated Circuits for 5G Mobile Telecommunication)

  • 이종민;민병규;장우진;지홍구;조규준;강동민
    • 전자통신동향분석
    • /
    • 제36권3호
    • /
    • pp.53-64
    • /
    • 2021
  • As the 5G service market is expected to grow rapidly, the development of high-power, high-efficiency power amplifiers for the 5G communication infrastructure is indispensable. Gallium nitride (GaN) is attracting great interest as a key device in power devices and integrated circuits due to its wide bandgap, high carrier concentration, high electron mobility, and high-power saturation characteristics. In this study, we investigate the technology trends of Ka-band GaN radio frequency (RF) power devices and integrated circuits for operation in the millimeter-wave band of recent 5G mobile communication services. We review the characteristics of GaN RF high electron mobility transistor (HEMT) devices to implement power amplifiers operating at frequencies around 28 GHz and compare the technology of foreign companies with the device characteristics currently developed by the Electronics and Telecommunication Research Institute (ETRI). In addition, the characteristics of Ka-band GaN monolithic microwave integrated circuit (MMIC) power amplifiers manufactured using various GaN HEMT device technologies are reviewed by comparing characteristics such as frequency band, output power, and output power density of integrated circuits. In addition, by comparing the performance of the power amplifier developed by ETRI, the current status and future direction of domestic GaN power devices and integrated circuit technology will be discussed.

차세대 GaN RF 전력증폭 소자 및 집적회로 기술 동향 (Technical Trends in Next-Generation GaN RF Power Devices and Integrated Circuits)

  • 이상흥;임종원;강동민;백용순
    • 전자통신동향분석
    • /
    • 제34권5호
    • /
    • pp.71-80
    • /
    • 2019
  • Gallium nitride (GaN) can be used in high-voltage, high-power-density/-power, and high-speed devices owing to its characteristics of wide bandgap, high carrier concentration, and high electron mobility/saturation velocity. In this study, we investigate the technology trends for X-/Ku-band GaN RF power devices and MMIC power amplifiers, focusing on gate-length scaling, channel structure, and power density for GaN RF power devices and output power level and output power density for GaN MMIC power amplifiers. Additionally, we review the technology trends in gallium arsenide (GaAs) RF power devices and MMIC power amplifiers and analyze the technology trends in RF power devices and MMIC power amplifiers based on both GaAs and GaN. Furthermore, we discuss the current direction of national research by examining the national and international technology trends with respect to X-/Ku-band power devices and MMIC power amplifiers.

Si MOSFET과 GaN FET Power System 성능 비교 평가 (Comparative Performance Evaluation of Si MOSFET and GaN FET Power System)

  • 안정훈;이병국;김종수
    • 전력전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.283-289
    • /
    • 2014
  • This paper carries out a series of analysis of power system using Gallium Nitride (GaN) FET which has wide band gap (WBG) characteristics comparing to conventional Si MOSFET-used power system. At first, for comparison of each semiconductor device, the switching-transient parameter is quantitatively extracted from released information of GaN FET. And GaN FET model which reflect this dynamic property is configured. By using this model, the performance of GaN FET is analyzed comparing to Si MOSFET. Also, in order to enable a representative assessment on the power system level, Si MOSFET and GaN FET are applied to the most common structure of power system, full-bridge, and each power systems are compared based on various criteria, such as performance, efficiency and power density. The entire process is verified with the aid of mathematical analysis and simulation.

유도 가열 시스템에서 SiC MOSFET과 GaN Transistor의 성능 비교를 통한 소자 적합성 분석 (Device Suitability Analysis by Comparing Performance of SiC MOSFET and GaN Transistor in Induction Heating System)

  • 차광형;주창태;민성수;김래영
    • 전력전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.204-212
    • /
    • 2020
  • In this study, device suitability analysis is performed by comparing the performance of SiC MOSFET and GaN Transistor, which are WBG power semiconductor devices in the induction heating (IH) system. WBG devices have the advantages of low conduction resistance, switching losses, and fast switching due to their excellent physical properties, which can achieve high output power and efficiency in IH systems. In this study, SiC and GaN are applied to a general half-bridge series resonant converter topology to compare the conduction loss, switching loss, reverse conduction loss, and thermal performance of the device in consideration of device characteristics and circuit conditions. On this basis, device suitability in the IH system is analyzed. A half-bridge series resonant converter prototype using the SiC and GaN of a 650-V rating is constructed to verify device suitability through performance comparison and verified through an experimental comparison of power loss and thermal performance.

AlGaN/GaN HEMT 전력소자 시뮬레이션에 관한 연구 (A Study on the Simulation of AlGaN/GaN HEMT Power Devices)

  • 손명식
    • 반도체디스플레이기술학회지
    • /
    • 제13권4호
    • /
    • pp.55-58
    • /
    • 2014
  • The next-generation AlGaN/GaN HEMT power devices need higher power at higher frequencies. To know the device characteristics, the simulation of those devices are made. This paper presents a simulation study on the DC and RF characteristics of AlGaN/GaN HEMT power devices. According to the reduction of gate length from $2.0{\mu}m$ to $0.1{\mu}m$, the simulation results show that the drain current at zero gate voltage increases, the gate capacitance decreases, and the maximum transconductance increases, and thus the cutoff frequency and the maximum oscillation frequency increase. The maximum oscillation frequency maintains higher than the cutoff frequency, which means that the devices are useful for power devices at very high frequencies.

레이더 응용을 위한 X-대역 40W AlGaN/GaN 전력 증폭기 MMIC (A X-band 40W AlGaN/GaN Power Amplifier MMIC for Radar Applications)

  • 임병옥;고주석;류근관;김성찬
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.722-727
    • /
    • 2022
  • 본 논문에서는 0.25 ㎛의 게이트를 갖는 AlGaN/GaN HEMT를 기반으로 개발된 X-대역 전력 증폭기 MMIC의 특성을 기술한다. 개발된 X-대역 전력 증폭기 MMIC는 9 GHz~10 GHz의 주파수 대역에서 21.6 dB 이상의 소신호 이득과 46.11dBm(40.83 W) 이상의 출력 전력을 가진다. 전력 부가 효율 특성은 43.09%~44.47%이며 칩의 크기는 3.6 mm×4.3 mm이다. 출력 전력 밀도는 2.69 W/mm2를 나타내었다. 개발된 AlGaN/GaN 전력 증폭기 MMIC는 다양한 X-대역 레이더 응용에 적용 가능하다.

Review on Gallium Nitride HEMT Device Technology for High Frequency Converter Applications

  • Yahaya, Nor Zaihar;Raethar, Mumtaj Begam Kassim;Awan, Mohammad
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.36-42
    • /
    • 2009
  • This paper presents a review of an improved high power-high frequency III-V wide bandgap (WBG) semiconductor device, Gallium Nitride (GaN). The device offers better efficiency and thermal management with higher switching frequency. By having higher blocking voltage, GaN can be used for high voltage applications. In addition, the weight and size of passive components on the printed circuit board can be reduced substantially when operating at high frequency. With proper management of thermal and gate drive design, the GaN power converter is expected to generate higher power density with lower stress compared to its counterparts, Silicon (Si) devices. The main contribution of this work is to provide additional information to young researchers in exploring new approaches based on the device's capability and characteristics in applications using the GaN power converter design.

게이트 드라이버가 집적된 GaN 모듈을 이용한 48V-12V 컨버터의 설계 및 효율 분석 (Design and Efficiency Analysis 48V-12V Converter using Gate Driver Integrated GaN Module)

  • 김종완;최중묵;유세프알라브;제이슨라이
    • 전력전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.201-206
    • /
    • 2019
  • This study presents the design and experimental result of a GaN-based DC-DC converter with an integrated gate driver. The GaN device is attractive to power electronic applications due to its superior device performance. However, the switching loss of a GaN-based power converter is susceptible to the common source inductance, and converter efficiency is severely degraded with a large loop inductance. The objective of this study is to achieve high-efficiency power conversion and the highest power density using a multiphase integrated half-bridge GaN solution with minimized loop inductance. Before designing the converter, several GaN and Si devices were compared and loss analysis was conducted. Moreover, the impact of common source inductance from layout parasitic inductance was carefully investigated. Experimental test was conducted in buck mode operation at 48 -12 V, and results showed a peak efficiency of 97.8%.

SMD 타입 태양전지 어레이를 이용한 white GaN LED용 전원 공급 장치 (Power Supply for White GaN LED by Using SMD Type Solar Cell Array)

  • 김성일;이윤표
    • 신재생에너지
    • /
    • 제5권4호
    • /
    • pp.34-37
    • /
    • 2009
  • Using six SMD(surface mount device) type AlGaAs/GaAs single junction solar cells connected in series, a power source was fabricated for a white GaN LED. The electrical properties of the power source was measured and analyzed under one sun (100mW/$cm^2$) and various indoor light (300 - 900 lux) conditions. Under 600 lux indoor light condition, output power was 17.06 ${\mu}W$ and it was 30.75 ${\mu}W$ under 900 lux indoor light condition. Using the fabricated solar cell power supply, we have turned on the white GaN LED. It was worked well under 15 ${\mu}W$(at 480 lux) power supplied from solar cell array. This kind of solar cell power supply can be used as a power source for ubiquitous sensor network (USN).

  • PDF