• Title/Summary/Keyword: Gaeumannomyces graminis var. tritici

Search Result 3, Processing Time 0.018 seconds

Sheath Rot Dieseases of Rice Seedling Caused by Gaeumannomyces graminis var. tritici in Korea (Gaeumannomyces graminis var. tritici에 의한 벼 엽초(葉?) 썩음병)

  • Sung, Jae-Mo;Lee, Seung-Chan;Park, Jong-Seong
    • The Korean Journal of Mycology
    • /
    • v.10 no.4
    • /
    • pp.177-180
    • /
    • 1982
  • Gaeumannomyces graminis var. tritici was first isolated from rice in 1981. Sheath rot of rice seedling in box culture for machine transplanting was produced by artificial inoculation of the causal organism. Especially sheath rot was developed from crown to leaf sheath above water level. Perithecia were usually formed in dead leaf sheaths and in PDA culture. They were black, globose, and immersed with obliquely erumpent neck. Asci were unitunicate with an apical ring and contained 8 spores. Ascospores were hyline, slender, $80{\sim}140\;um$ in length. Each spore showed $3{\sim}4\;septa.$ Based on morphological and cultura characteristics, the isolate from seeds was identified as Gaeumannomyces graminis (Sacc.) Arx & Olivier tritici J. Walker.

  • PDF

Take-all of Wheat and Natural Disease Suppression: A Review

  • Kwak, Youn-Sig;Weller, David M.
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.125-135
    • /
    • 2013
  • In agro-ecosystems worldwide, some of the most important and devastating diseases are caused by soil-borne necrotrophic fungal pathogens, against which crop plants generally lack genetic resistance. However, plants have evolved approaches to protect themselves against pathogens by stimulating and supporting specific groups of beneficial microorganisms that have the ability to protect either by direct inhibition of the pathogen or by inducing resistance mechanisms in the plant. One of the best examples of protection of plant roots by antagonistic microbes occurs in soils that are suppressive to take-all disease of wheat. Take-all, caused by Gaeumannomyces graminis var. tritici, is the most economically important root disease of wheat worldwide. Take-all decline (TAD) is the spontaneous decline in incidence and severity of disease after a severe outbreak of take-all during continuous wheat or barley monoculture. TAD occurs worldwide, and in the United States and The Netherlands it results from a build-up of populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing fluorescent Pseudomonas spp. during wheat monoculture. The antibiotic 2,4-DAPG has a broad spectrum of activity and is especially active against the take-all pathogen. Based on genotype analysis by repetitive sequence-based-PCR analysis and restriction fragment length polymorphism of phlD, a key 2,4-DAPG biosynthesis gene, at least 22 genotypes of 2,4-DAPG producing fluorescent Pseudomonas spp. have been described worldwide. In this review, we provide an overview of G. graminis var. tritici, the take-all disease, Pseudomonas biocontrol agents, and mechanism of disease suppression.

Selection of Reference Genes for Real-time Quantitative PCR Normalization in the Process of Gaeumannomyces graminis var. tritici Infecting Wheat

  • Xie, Li-hua;Quan, Xin;Zhang, Jie;Yang, Yan-yan;Sun, Run-hong;Xia, Ming-cong;Xue, Bao-guo;Wu, Chao;Han, Xiao-yun;Xue, Ya-nan;Yang, Li-rong
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.11-18
    • /
    • 2019
  • Gaeumannomyces graminis var. tritici is a soil borne pathogenic fungus associated with wheat roots. The accurate quantification of gene expression during the process of infection might be helpful to understand the pathogenic molecular mechanism. However, this method requires suitable reference genes for transcript normalization. In this study, nine candidate reference genes were chosen, and the specificity of the primers were investigated by melting curves of PCR products. The expression stability of these nine candidates was determined with three programs-geNorm, Norm Finder, and Best Keeper. $TUB{\beta}$ was identified as the most stable reference gene. Furthermore, the exopolygalacturonase gene (ExoPG) was selected to verify the reliability of $TUB{\beta}$ expression. The expression profile of ExoPG assessed using $TUB{\beta}$ agreed with the results of digital gene expression analysis by RNA-Seq. This study is the first systematic exploration of the optimal reference genes in the infection process of Gaeumannomyces graminis var. tritici.