• Title/Summary/Keyword: Gamma detection

Search Result 530, Processing Time 0.024 seconds

Monte-Carlo simulation for detecting neutron and gamma-ray simultaneously with CdZnTe half-covered by gadolinium film

  • J. Byun ;J. Seo ;Y. Kim;J. Park;K. Shin ;W. Lee ;K. Lee ;K. Kim;B. Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1031-1035
    • /
    • 2023
  • Neutron is an indirectly ionizing particle without charge, which is normally measured by detecting reaction products. Neutron detection system based on measuring gadolinium-converted gamma-rays is a good way to monitor the neutron because the representative prompt gamma-rays of gadolinium have low energies (79, 89, 182, and 199 keV). Low energy gamma-rays and their high attenuation coefficient on materials allow the simple design of a detector easier to manufacture. Thus, we designed a cadmium zinc telluride detector to investigate feasibility of simultaneous detection of gamma-rays and neutrons by using the Monte-Carlo simulation, which was divided into two parts; first was gamma-detection part and second was gamma- and neutron-simultaneous detection part. Consequently, we confirmed that simultaneous detection of gamma-rays and neutrons could be feasible and valid, although further research is needed for adoption on real detection.

The Study for the Method of Fast and Efficient Gamma-ray Detection for the Stereo Gamma-ray Ddetection System (스테레오 감마선 탐지장치의 고속 방사선 탐지기법에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1253-1258
    • /
    • 2014
  • In this paper, we propose the fast and efficient detection method using the continuous measurement technique for the gamma-ray signal acquisition. This method is improved than the conventional method for the getting information of the radiation distribution. First, we implement the stereo radiation detection system using gamma-ray sensors and the motion controller. We apply continuous measurement technique to the gamma-ray detector and conduct gamma-ray irradiation test for the comparison of detection techniques. The results show that the continuous measurement technique has the high efficient performance than the conventional method.

The development of th gamma-ray imaging and operation algorithm for the gamma-ray detection system (감마선 탐지장치의 감마선 영상화 및 운용 알고리즘 개발)

  • Song, Kun-young;Hwang, Young-gwan;Lee, Nam-ho;Yuk, Young-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.942-943
    • /
    • 2016
  • Stereo gamma ray detection system generates a two-dimensional image of the gamma ray by using the position values and the gamma ray signal. And the device will overlap with the visible light image shows the actual distribution of the gamma-ray space. The gamma ray detection device is a stereo configuration to a motion controller for controlling the signal measurement unit and the position detection portion for detecting the detection portion and the gamma-ray signal comprising a gamma-ray detection sensor. In this paper, we developed a system operation management algorithm for each module individually configured efficiently. We confirmed the imaged and distribution information output for the gamma rays from gamma-ray irradiation test site by using these results.

  • PDF

The Visualization and the Fast Detection of Gamma Radiation Source using Stereo Image Processing (영상처리기반 감마선원 거리탐지 고속화 및 가시화 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.2001-2006
    • /
    • 2016
  • The stereo radiation detection system detects the gamma source and acquires two dimensional left and right images for gamma source and visible objects using the detection result. And then the system measures the distance to the radiation source from the system in 3D space using stereo vision algorithm. In this paper, we implemented the fast detection algorithm for gamma source from the system in 3D space to reduce the detection time with image processing algorithms. Additionally, the system's performance is verified through experiments on gamma irradiation facilities. As a result, if the fast detection algorithm applied to the system, we can confirm that the detection system represents a 35% better performance than the conventional detection method that is full scanning to acquire the stereo image. We also have visualized a gamma source distribution through a 3D monitor using the stereo vision algorithm in order to provide the information of radiation spatial distribution to the user efficiently.

A Copper Shield for the Reduction of X-γ True Coincidence Summing in Gamma-ray Spectrometry

  • Byun, Jong-In
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • Background: Gamma-ray detectors having a thin window of a material with low atomic number can increase the true coincidence summing effects for radionuclides emitting X-rays or gamma-rays. This effect can make efficiency calibration or spectrum analysis more complicated. In this study, a Cu shield was tested as an X-ray filter to neglect the true coincidence summing effect by X-rays and gamma-rays in gamma-ray spectrometry, in order to simplify gamma-ray energy spectrum analysis. Materials and Methods: A Cu shield was designed and applied to an n-type high-purity germanium detector having an $X-{\gamma}$ summing effect during efficiency calibration. This was tested using a commercial, certified mixed gamma-ray source. The feasibility of a Cu shield was evaluated by comparing efficiency calibration results with and without the shield. Results and Discussion: In this study, the thickness of a Cu shield needed to avoid true coincidence summing effects due to $X-{\gamma}$ was tested and determined to be 1 mm, considering the detection efficiency desired for higher energy. As a result, the accuracy of the detection efficiency calibration was improved by more than 13% by reducing $X-{\gamma}$ summing. Conclusion: The $X-{\gamma}$ summing effect should be considered, along with ${\gamma}-{\gamma}$ summing, when a detection efficiency calibration is implemented and appropriate shielding material can be useful for simplifying analysis of the gamma-ray energy spectra.

Advances in gamma radiation detection systems for emergency radiation monitoring

  • Kumar, K.A. Pradeep;Sundaram, G.A. Shanmugha;Sharma, B.K.;Venkatesh, S.;Thiruvengadathan, R.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2151-2161
    • /
    • 2020
  • The study presents a review of research advancements in the field of gamma radiation detection systems for emergency radiation monitoring, particularly two major sub-systems namely (i) the radiation detector and (ii) the detection platform - air-borne and ground-based. The dynamics and functional characteristics of modern radiation detector active materials are summarized and discussed. The capabilities of both ground-based and aerial vehicle platforms employed in gamma radiation monitoring are deliberated in depth.

Design of radiation detection circuit for gamma column scanning (자동 감마 증류탑 검사 장치를 위한 방사선 계측장치 설계)

  • Kim, Jong-Beom;Jeong, Seong-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.612-615
    • /
    • 2003
  • In this paper, a design of radiation detector for gamma column scanner is introduced. Distillation column is important unit in Petro-chemical industries, and its on-line diagnose is very important. To get density profile measured by the radiation transmitted through column is well method for on-line diagnose as gamma scanning. For this purpose radiation detection circuit, radiation source and mechanical system for moving source and detector are required. Conventional radiation detection circuit for this application is sensitive to electric noise because of interface between the radiation circuit and the controller for mechanical system. The radiation detection system introduced here is using loop coil instead of slip ring to remove contact noise. Radiation detection system designed here for gamma scanning consist of BGO detector, high voltage circuit, PHA circuit and FSK modem. The BGO detector is used as radiation sensor, high voltage circuit and peak height analysis circuit is essential to process the signal generated from BGO detector. Micro controller convert measured data into ASCII data. FSK modem transmit ASCII data. Transmitted ASCH data is picked up in antenna coil and processed for combined function with mechanical system. This method gives good result by isolating the controlling circuit of mechanical system from radiation detecting circuit which is sensitive to noise.

  • PDF

Using machine learning for anomaly detection on a system-on-chip under gamma radiation

  • Eduardo Weber Wachter ;Server Kasap ;Sefki Kolozali ;Xiaojun Zhai ;Shoaib Ehsan;Klaus D. McDonald-Maier
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.3985-3995
    • /
    • 2022
  • The emergence of new nanoscale technologies has imposed significant challenges to designing reliable electronic systems in radiation environments. A few types of radiation like Total Ionizing Dose (TID) can cause permanent damages on such nanoscale electronic devices, and current state-of-the-art technologies to tackle TID make use of expensive radiation-hardened devices. This paper focuses on a novel and different approach: using machine learning algorithms on consumer electronic level Field Programmable Gate Arrays (FPGAs) to tackle TID effects and monitor them to replace before they stop working. This condition has a research challenge to anticipate when the board results in a total failure due to TID effects. We observed internal measurements of FPGA boards under gamma radiation and used three different anomaly detection machine learning (ML) algorithms to detect anomalies in the sensor measurements in a gamma-radiated environment. The statistical results show a highly significant relationship between the gamma radiation exposure levels and the board measurements. Moreover, our anomaly detection results have shown that a One-Class SVM with Radial Basis Function Kernel has an average recall score of 0.95. Also, all anomalies can be detected before the boards are entirely inoperative, i.e. voltages drop to zero and confirmed with a sanity check.

Development of Effective ${\gamma}$-ray and ${\beta}$-ray Detection Methods For Low-Level Radioactive Wastes (극저준위 방사성 폐기물을 위한 효율적인 ${\gamma}$-선 및 ${\beta}$-선 측정 방법 개발)

  • Kwak, Sung-Woo;Yeom, Yu-Sun;Kim, Ho-Kyung;Cho, Gyu-Seong;Park, Joo-Wan;Kim, Chang-Lak;Song, Myung-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.393-398
    • /
    • 2001
  • The non-combustible RI wastes disposed of in hospital every year emit ${\gamma}$-ray or ${\beta}$-ray but their activities are very low to the extent of background. Development of more simple methods is needed because the conventional detection methods are so ineffective and complex. In this study, to solve this problem, detection method using efficiency curve for ${\gamma}$-ray emitting radioactive wastes measurement is proposed and experimental detection efficiency equation is also determined through HPGe's standard specimen measurement. For ${\beta}$-emitting radioisotopes detection, new measurement method using detection efficiency estimated by Monte Carlo simulation and SBD measurements is also proposed. According to the results of this paper, the unknown activity of low-level radioactive wastes without LSC requiring the preparation of standard sample and measurement for standard source detection efficiency could be determined efficiently and simply about ${\pm}17%$ in errors by using the theoretical detection efficiency and the SBD measurement result.

  • PDF

A new dead-time determination method for gamma-ray detectors using attenuation law

  • Akyurek, T.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4093-4097
    • /
    • 2021
  • This study presents a new dead-time measurement method using the gamma attenuation law and generalized dead-time models for nuclear gamma-ray detectors. The dead-time of the NaI(Tl) detection system was obtained to validate the new dead-time determination method using very thin lead and polyethylene absorbers. Non-paralyzing dead-time was found to be 8.39 ㎲, and paralyzing dead-time was found to be 8.35 ㎲ using lead absorber for NaI(Tl) scintillator detection system. These dead-time values are consistent with the previously reported dead-time values for scintillator detection systems. The gamma build-up factor's contribution to the dead-time was neglected because a very thin material was used.