• Title/Summary/Keyword: Ganoderma boninense

Search Result 4, Processing Time 0.02 seconds

A review of the latest research on Ganoderma boninense

  • Su-Han LEE;Su-Han LEE
    • The Korean Journal of Food & Health Convergence
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • As oil palm trees are an important economic source in many countries, particularly in Southeast Asia and Africa, the study of Ganoderma boninense is crucial for the sustainability of the oil palm industry. This study aims to understand the biology and ecology of the fungus, its pathogenesis, and the impact it has on oil palm trees. This knowledge can be used to develop management strategies to mitigate the damage caused by the fungus, such as the use of resistant varieties, chemical and biological control methods, and cultural practices. This study is to ensure the long-term productivity and sustainability of the oil palm industry. The main method of recent academic studies on this pathogen is molecular biology, with a focus on genetic analysis and functional genomics. Researchers have used techniques such as PCR, DNA sequencing, and transcriptomics to identify genes and pathways involved in pathogenesis and better understand the fungus's interactions with its host plant. Other methods used in recent studies include biochemical analysis, microscopy, and phytohormonal assays to investigate the biochemistry and physiology of the interaction between G. boninense and oil palm. This study is intended to provide implications from a new perspective by organizing and integrating studies on Ganoderma boninense.

Scytalidium parasiticum sp. nov., a New Species Parasitizing on Ganoderma boninense Isolated from Oil Palm in Peninsular Malaysia

  • Goh, Yit Kheng;Goh, Teik Khiang;Marzuki, Nurul Fadhilah;Tung, Hun Jiat;Goh, You Keng;Goh, Kah Joo
    • Mycobiology
    • /
    • v.43 no.2
    • /
    • pp.107-117
    • /
    • 2015
  • A mycoparasite, Scytalidium parasiticum sp. nov., isolated from the basidiomata of Ganoderma boninense causing basal stem rot of oil palm in Johor, Malaysia, is described and illustrated. It is distinct from other Scytalidium species in having smaller asci and ascospores (teleomorphic stage), longer arthroconidia (anamorphic stage), hyaline to yellowish chlamydospores, and producing a fluorescent pigment. The phylogenetic position of S. parasiticum was determined by sequence analyses of the internal transcribed spacers and the small-subunit ribosomal RNA gene regions. A key to identify Scytalidium species with teleomorphic stage is provided.

Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid

  • Bivi, M. Shahul Hamid Rahamah;Paiko, Adamu Saidu;Khairulmazmi, Ahmad;Akhtar, M.S.;Idris, Abu Seman
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.396-406
    • /
    • 2016
  • Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.

Lysinabacillus fusiformis and Paenibacillus alvei Obtained from the Internal of NasutitermesTermites Revealed Their Ability as Antagonist of Plant Pathogenic Fungi

  • Fitriana, Yuyun;Tampubolon, Desi Apriani Teresa;Suharjo, Radix;Lestari, Puji;Swibawa, I Gede
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • This study was performed to reveal phenotypic characters and identity of symbiont bacteria of Nasutitermes as well as investigate their potential as antagonist of plant pathogenic fungi. Isolation of the symbiont bacteria was carried out from inside the heads and the bodies of soldier and worker termite which were collected from 3 locations of nests. Identification was performed using phenotypic test and sequence of 16S ribosomal DNA (16S rDNA). Antagonistic capability was investigated in the laboratory against 3 phytopathogenic fungi i.e., Phytophthora capsici, Ganoderma boninense, and Rigidoporus microporus. Totally, 39 bacterial isolates were obtained from inside the heads and the bodies of Nasutitermes. All the isolates showed capability to inhibit growth of P. capsici, however, 34 isolates showed capability to inhibit growth of G. boninense and 32 isolates showed capability to inhibit growth of R. microporus. Two bacterial strains (IK3.1P and 1B1.2P) which showed the highest percentage of inhibition were further identified based on their sequence of 16S rDNA. The result showed that 1K3.1P strain was placed in the group of type strain and reference strains of Lysinibacillus fusiformis meanwhile 1B1.2P strain was grouped within type strain and reference strains Paenibacillus alvei. The result of this study supply valuable information on the role of symbiont bacteria of Nasutitermes, which may support the development of the control method of the three above-mentioned phytopathogenic fungi.