• Title/Summary/Keyword: Garcinol

Search Result 2, Processing Time 0.017 seconds

Synthesis, Characterization and Antimicrobial Activity of Garcinol Capped Silver Nanoparticles

  • Fernando, H.N.;Kumarasinghe, K.G.U.R.;Gunasekara, T.D.C.P.;Wijekoon, H.P.S.K.;Ekanayaka, E.M.A.K.;Rajapaksha, S.P.;Fernando, S.S.N.;Jayaweera, P.M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1841-1851
    • /
    • 2019
  • Garcinol, a well-known medicinal phytochemical, was extracted and isolated from the dried fruit rinds of Garcinia quaesita Pierre. In this study, garcinol has successfully used to reduce silver ions to silver in order to synthesize garcinol-capped silver nanoparticles (G-AgNPs). The formation and the structure of G-AgNPs were confirmed by UV-visible spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The antimicrobial activity of garcinol and G-AgNPs were investigated by well diffusion assays, broth micro-dilution assays and time-kill kinetics studies against five microbial species, including Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), Candida albicans (ATCC 10231) and clinically isolated methicillin-resistant Staphylococcus aureus (MRSA). The formation of G-AgNPs is a promising novel approach to enhancing the biological activeness of silver nanoparticles, and to increase the water solubility of garcinol which creates a broad range of therapeutic applications.

Garcinol, an Acetyltransferase Inhibitor, Suppresses Proliferation of Breast Cancer Cell Line MCF-7 Promoted by 17β-Estradiol

  • Ye, Xia;Yuan, Lei;Zhang, Li;Zhao, Jing;Zhang, Chun-Mei;Deng, Hua-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.5001-5007
    • /
    • 2014
  • The acetyltransferase inhibitor garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Anti-cancer activity has been suggested but there is no report on its action via inhibiting acetylation against cell proliferation, cell cycle progression, and apoptosis-inhibtion induced by estradiol ($E_2$) in human breast cancer MCF-7 cells. The main purposes of this study were to investigate the effects of the acetyltransferase inhibitor garcinol on cell proliferation, cell cycle progression and apoptosis inhibition in human breast cancer MCF-7 cells treated with estrogen, and to explore the significance of changes in acetylation levels in this process. We used a variety of techniques such as CCK-8 analysis of cell proliferation, FCM analysis of cell cycling and apoptosis, immunofluorescence analysis of NF-${\kappa}B$/p65 localization, and RT-PCR and Western blotting analysis of ac-H3, ac-H4, ac-p65, cyclin D1, Bcl-2 and Bcl-xl. We found that on treatment with garcinol in MCF-7 cells, $E_2$-induced proliferation was inhibited, cell cycle progression was arrested at G0/G1 phase, and the cell apoptosis rate was increased. Expression of ac-H3, ac-H4 and NF-${\kappa}B$/ac-p65 proteins in $E_2$-treated MCF-7 cells was increased, this being inhibited by garcinol but not ac-H4.The nuclear translocation of NF-${\kappa}B$/p65 in $E_2$-treated MCF-7 cells was also inhibited, along with cyclin D1, Bcl-2 and Bcl-xl in mRNA and protein expression levels. These results suggest that the effect of $E_2$ on promoting proliferation and inhibiting apoptosis is linked to hyperacetylation levels of histones and nonhistone NF-${\kappa}B$/p65 in MCF-7 cells. The acetyltransferase inhibitor garcinol plays an inhibitive role in MCF-7 cell proliferation promoted by $E_2$. Mechanisms are probably associated with decreasing ac-p65 protein expression level in the NF-${\kappa}B$ pathway, thus down-regulating the expression of cyclin D1, Bcl-2 and Bcl-xl.