• Title/Summary/Keyword: Gas Assisted Injection Molding

Search Result 26, Processing Time 0.029 seconds

A Study of Gas-Assisted Injection Molding of 17" Flat Monitor Front Cover (17" 평면 모니터 Front Cover의 가스사출성형에 관한 연구)

  • Kim, Hong-Seok;Son, Jung-Sik;Seo, Tae-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.766-771
    • /
    • 2001
  • Gas-assisted injection molding is an innovative low-pressure injection molding technique that can provide numerous benefits such as reduced part warpage, excellent surface quality without sink marks, low injection pressure, and greater design flexibility. However, the adoption of gas-assisted injection molding may cause unexpected defects if the gas channel design is not conducted properly. The objective of this paper is to broaden the understanding of gas-assisted injection molding by summarizing the design procedures and experimental results of the gas-assisted injection molding of a 17" flat monitor front cover. The gas channels were designed by using Moldflow(MF/GAS) simulations and a 450 ton injection molding machine with a 5 stage pressure control gas kit was used in the experiments.

  • PDF

Development of a Gas Assisted Injection Molding Process for Exterior Display Panels (디스플레이용 외장패널의 가스사출공정 개발)

  • Choi, D.S.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • Gas Assisted Injection Molding is a relatively new low-pressure injection molding technique that provides benefits such as reduced part warpage, excellent surface quality without shrink marks, greater design flexibility, etc. In the gas assisted injection molding process, the injected pressurized nitrogen gas flows through designed gas channels and forms hollow sections within the part. However, due to the characteristics of the gas, the design of the gas channels which are the paths for the injected gas is important in order to avoid defects such as gas blowout, fingering, etc. Therefore, in this study, the gas channel design for gas assisted injection molding of exterior display panels was conducted by examining the results of three CAE analyses. The designed gas channel was verified by conducting tryouts using a 450 ton injection molding machine with 3-stage pressure controlled gas kit. In addition, the hollow shapes which were formed by the gas with the installed gas channels were examined by examining the cross sections of the prototypes that were produced. As a result, it was found that exterior display panels can be produced without any defect by applying the gas assisted injection molding technique.

A Study on the Unified Molding of a Portable Cosmetic Chest Using Gas-Assisted Injection Molding (가스사출성형을 이용한 휴대용 화장품 보관함의 일체화 성형 연구)

  • Lee, Ho-Sang;Ryu, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.772-777
    • /
    • 2001
  • The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.

  • PDF

A Study on the Unified Molding for a Box Shaped Thick Part Using Gas-Assisted Injection Molding (가스사출성형을 이용한 두꺼운 박스형 제품의 일체화 성형 연구)

  • 이호상
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.402-410
    • /
    • 2001
  • The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.

  • PDF

The Effects of Processing Variables on Gas Penetration in Gas-Assisted Powder Injection Molding(GAPIM) (가스분말사출성형에서 공정조건 변화가 중공부 형성에 미치는 영향)

  • Kim, D.H.;Park, H.P.;Lee, K.H.;Cha, B.S.;Choi, J.H.;Rhee, B.O.;Tovar, Jorge A.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.107-112
    • /
    • 2012
  • Gas-assisted injection molding(GAIM) produces parts with hollow internal sections. The technique offers benefits to powder injection molding(PIM), with lower material usage and reduced time for de-binding processes. In this study, the effects of processing parameters on gas penetration length of gas-assisted powder injection molding(GAPIM) were investigated for SUS316L stainless steel powder feedstock. Experiments were planned based on the Taguchi method, involving processing variables such as melt temperature, shot size, gas pressure, and gas delay time. The most significant parameters affecting gas penetration length were gas delay time and shot size, while the effects of melt temperature and gas pressure was relatively insignificant.

Modeling of hollow formation and its dynamics in liquid gas assisted injection molding process

  • Kim, Dong-Hak;Ahn, Kyung-Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.1
    • /
    • pp.27-33
    • /
    • 2004
  • Application of gas assisted injection molding has been expanded during last two decades because of many advantages such as design flexibility, dimensional stability, reduction of machine tonnages, and so on. However, the surface defects including hesitation mark and gloss difference are observed for thick parts. Difficulties in lay-out of the gas channel and processing condition are another disadvantages. Liquid gas assisted injection molding(LGAIM), in which a liquid with a boiling point lower than the temperature of the polymer melt is injected into the melt stream, and travels with the melt into the mold where it vaporizes and pushes the melt downstream and against the cavity walls to create hollow channels within the part, is a good alternative of the conventional gas assisted injection molding especially in manufacturing simple and very thick parts. Though this is a new frontier of the innovation in the injection molding industry, there is no guideline for the design and processing conditions. In this paper, theoretical analysis has been made to describe the hollow formation dynamics in LGAIM. This model provides an insight into LGAIM process: explains why LGAIM has advantages over conventional gas assisted injection molding, and gives a guideline for the design and processing conditions.

Gas-Assisted Injection Molding for Box Shape Molded Parts (박스형태 제품의 가스사출성형)

  • 조재성
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.276-283
    • /
    • 1999
  • This study focuses on part quality and cycle times under gas-assisted injection molding (GIM) of box shape molded parts. The position of the gas channel was established near to parting line at the end of last locations to fill. Applied hot runner and valve gates, the gas was introduced directly into the mold cavity via gas pin. As GIM was applied, the conclusion reached as follows. I) The quality of appearance was improved by reducing sink marks and scratches of texture. ii) The reliability was improved by preventing warpages and reinforcing rigidity through optimum gas channel layout. iii) It is enable to use small size of injection molding machine step by step as GIM was accomplished low pressure and reduced clamp forces against CIM. iv) The productivity were improved by reducing cycle times.

  • PDF

Effects of Processing Variables on the Gas Penetrated Part of Gas-Assisted Injection Molding (가스사출성형인자가 가스사출성형품의 중공부 형성에 미치는 영향)

  • Han Seong Ryul;Park Tae Won;Jeong Yeong Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.144-150
    • /
    • 2005
  • Gas-assisted injection molding (GAIM) process is reducing the injection pressure during mold filling required as well as the shrinkage and warpage of the part and cycle time. Despite of these advantages, this process introduces new parameters and makes the application more difficult because the process interacts between gas and melt during injection molding process. Important GAIM factors that involved in this process include gas penetration design, locations of gas injection points, shot size, gas injection delay time as well as common injection molding parameters, gas pressure and gas injection time. In this study, the experiments were conducted to investigate effects of GAIM process variables on the gas penetration for PP and ABS moldings by changing gas injection point. Taguchi method was used fer the design of experiment. When the gas was injected at cavity's center, the most effective factor was shot size. When the gas was injected at cavity's end, the most effective factor was melt temperature. Injection speed was also an effective factor in GAIM process.

Effects of Process Variables on the Gas Penetrated Part in Gas-Assisted Injection Molding

  • Han, Seong-Ryeol;Park, Tae-Won;Jeong, Yeong-Deug
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.8-11
    • /
    • 2006
  • Gas-assisted injection molding (GAIM) process reduces the required injection pressure during mold filling stage as well as the shrinkage and warpage of the part and cycle time. Despite of these advantages, this process needs new parameters and makes the application more difficult because gas and melt interact during the injection molding process. Important GAIM factors involved in this process are gas penetration design, locations of gas injection points, shot size, delay time to inject gas as well as common injection molding parameters. In this study, the experiments are conducted to investigate effects of GAIM process variables on the gas penetration for PP (Polypropylene) and ABS (Acrylonitrile Butadiene Styrene) moldings by changing the gas injection point. Taguchi method is used for the design of the experiments. When the gas is injected at a cavity's center, the most effective factor is the shot size. When the gas is injected at a cavity's end, the most effective factor is the melt temperature. The injection speed is also an effective factor in GAIM process.

A Study on Paintless Molded Parts in TV Mask Front Using Gas-Assisted Injection Molding (가스사출성형을 이용한 TV MASK FRONT의 무도장 제품에 관한 연구)

  • 조재성
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.691-700
    • /
    • 2002
  • Injection molded plastic parts have many surface detects: weld line, sink mark, flow mark, gloss, shading, scratching, and so on. Because these surface faults have not been accepted esthetically, plastic parts are Produced through painting or texturing. The purpose of this paper is to develop a paintless molded part of TV Mask Front by flow control method and gas-assisted injection molding. In order to minimize defects from injection molding, this study was carried out using computer aided injection mold filling simulations using MF/FLOW and MF/GAS. Based on these numerical results, we developed FR(Flame Retardant) HIPS and established guidelines of part design, mold design, and Processing conditions. We have achieved of cost sayings, improvement of productivity, and utilization of recycling by eliminating surface defects and painting process.