• Title/Summary/Keyword: Gas motion

Search Result 375, Processing Time 0.028 seconds

A Study on the Improvement of In-Cylinder Flow Motion in the Natural Gas Engine (천연가스엔진의 실린더내 흡기유동개선에 관한 연구)

  • Seo, Seung-U;Jeong, Dong-Su;O, Seung-Muk;Choe, Gyo-Nam
    • 연구논문집
    • /
    • s.23
    • /
    • pp.121-126
    • /
    • 1993
  • In general, natural gas engine converted from gasoline engine has disadvantage of power decrease. In order to increase power output in natural gas engine, the improvement of in-cylinder flow motion has been believed as the most effective method. In this study, the geometry of combustion chamber in 4 valve DOHC natural gas engine is modified, and in-cylinder flow patterns are analyized. Also engine performance is evaluated according to the modification of in-cylinder flow motion.

  • PDF

Analysis for Particle Motion of Vertical Rayleigh flow (수직 Rayleigh 유동내의 입자 거동 해석)

  • Ko, Seok-Bo;Jun, Yong-Du;Lee, Kum-Bae
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.755-760
    • /
    • 2006
  • The exhaust gas with solid particle goes through the riser in both particle circulating type and circulating fluidized bed type heat exchanger to recover the heat. During heat transfer, gas velocity in vertical riser decreases as viscosity of exhaust gas decreases. In this case, when the particle size is fixed, sometimes the exhaust gas happens to have lower velocity which prohibit them to go out of the riser. In this paper the particle motion in vertical Rayleigh flow was studied. The behavior of heat transfer was investigated by means of velocity and temperature distribution. The result from numerical analysis was validated by the experimental results. Fortran code was used to analyze the particle motion in vertical Rayleigh flow.

  • PDF

A Study on the Combustion Performance by the Improvement of In Cylinder Flow Motion in the Natural Gas Engine (실린더내 흡기유동개선이 천연가스엔진의 연소성능에 미치는 영향 연구)

  • Jeong, D.S.;Suh, S.W.;Oh, S.M.;Uhm, J.H.;Chang, Y.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.90-96
    • /
    • 1995
  • In general, natural gas engine converted from gasoline engine has disadvantage of power decrease. In order to increase power output in natural gas engine, the improvement of in-cylinder flow motion has been believed as the most effective method. In this study, the geometry of combustion chamber in 4 valve DOHC natural gas engine is modified, and in-cylinder flow patterns is analyized. Also engine performance is evaluated according to the modification of in-cylinder flow motion.

  • PDF

Study of Combustion and Emission Characteristics for DI Diesel Engine with a Swirl-Chamber

  • Liu, Yu;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.131-139
    • /
    • 2010
  • Gas motion within the engine cylinder is one of the major factors controlling the fuel-air mixing and combustion processes in diesel engines. In this paper, a special swirl-chamber is designed and applied to a DI (direct injection) diesel engine to generate a strong swirl motion thus enhancing gas motion. Compression, combustion and expansion strokes of this DI diesel engine with the swirl-chamber have been simulated by CFD software. The simulation model was first validated through comparisons with experimental data and then applied to do the simulation of the spray and combustion process. The velocity and temperature field inside the cylinder showed the influences of the strong swirl motion to spray and combustion process in detail. Cylinder pressure, average temperature, heat release rate, total amount of heat release, indicated thermal efficiency, indicated fuel consumption rate and emissions of this DI diesel engine with swirl-chamber have been compared with that of the DI diesel engine with $\omega$-chamber. The conclusions show that the engine with swirlchamber has the characteristics of fast mixture formulation and quick diffusive combustion; its soot emission is 3 times less than that of a $\omega$-chamber engine; its NO emission is 3 times more than that of $\omega$-chamber engine. The results show that the DI diesel engine with the swirl-chamber has the potential to reduce emissions.

The development and Performance test of the Cook Top type Gas valve for the slim-line style Gas Range (슬림라인형 가스레인지용 쿡탑형 가스 밸브의 개발과 작동 성능 검증)

  • Kim, Sang-Ju;Lee, Sang-Cheol;Ju, Kwang-Myung;Lee, Han-Jong;Chang, In-Bae
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.568-572
    • /
    • 2003
  • The height of valve body is limited to 30mm in the cook-top style gas valves for the domestic gas ranges. But the all the safety specifications of KS should be fulfilled and the magnetic power unit(MPU) should be installed in the valve body for the safety reason. The length of MPU body is longer than the 30mm that it should be located in the square direction of the knob shaft and therefore the implementation of the lever mechanism to transmit the press motion of the knob to the MPU valve is very difficult. In this paper, the hinged lever with inclined plate is used to transmit the press motion of the knob to the MPU valve. The analysis of the gas flow with using the commercial software of FLOW-3D shows that the gas flow capacity is fit for the domestic gas range. The performance and responsibility of the valve is tested for the mass production and the test results shows that the valve can be installed in the commercial gas range.

  • PDF

이원자기체군의 감쇠진동에 관한 연구

  • Kim, Su-Seon
    • The Science & Technology
    • /
    • v.8 no.12 s.79
    • /
    • pp.61-64
    • /
    • 1975
  • An expression for the vibrational frequency of diatomic molecular is obtained by using molecular gas temperature T and molecular gas mean-free path λ. And when λ/T →2.59, beca use of the damped vibration, a diatomic molecular gas is Impeded about transportation. If transfortation is not attained with this condition, rectilinear motion of a diatomic molecular gas can't maintain for the equilibrium state.

  • PDF

Ground Response Analysis of the Cmpressor Station for Installation of Seismic Instrument (정압관리소의 지전계측기 설치를 위한 지반특성 분석)

  • Kwon, Ki-Jun;Kim, Yong-Gil
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.79-86
    • /
    • 2002
  • In the case of earthquake, it is necessary to install earthquake instruments and to measure the ground motions for stable gas supply and restoration in case of supply suspension. Because each point in the site of the gas facilities has different characteristics of ground motion, it is recommended to measure at the point where the ground motion is representative. In this paper, ground motion analysis and noise pattern analysis are carried out to select suitable point for the installation of earthquake instruments and to set of dynamic range of sensors.

A Study on the Effect of Energy Saving with Newly Implemented Vertical Circulating Tray Mixer in Anaerobic digester (혐기성 소화조의 에너지 효율 향상을 위한 수직 왕복형 교반기 적용에 관한 연구)

  • Joo, Yoon-Sik;Son, Guntae;Bae, Youngjun;Park, Jungsoo;Lee, Seunghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.13-19
    • /
    • 2017
  • Relatively low efficiency in anaerobic digestion process is mainly caused by unproper mixing method. In this study, tray motion type agitator was applied in actual anaerobic digestion tank in order to improve the digestion efficiency, equalize the flow velocity distribution and energy saving. The impeller of tray motion type agitator was reciprocated vertically. Gas lift type agitator and tray motion type agitator appears almost same mixing efficiency include digestion rates. However, tray motion type agitator have shown that lower energy consumption compared to the conventional gas lift type agitator. Implementation of tray motion type agitator in the anaerobic digestion tanks contributed to the stabilization of mixing environment, efficiency and energy efficiency of the tank.

Analysis of the cause of dose delivery errors due to changes in abdominal gas volume during MRgART pancreatic cancer (췌장암 MRgART시 복부가스용적 변화에 의한 선량전달오류 원인 분석)

  • Ha, Min Yong;Son, Sang Jun;Kim, Chan Yong;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.73-83
    • /
    • 2020
  • Purpose: The purpose of this study is to confirm the matching of the electron density between tissue and gas due to variation of abdominal gas volume in MRgART (Magnetic Resonance-guided Adaptive Radiation Therapy) for pancreatic cancer patients, and to confirm the effect on the dose change and treatment time. Materials and Methods: We compared the PTV and OAR doses of the initial plan and the AGC(Abdominal gas correction) plans to one pancreatic cancer patient who treated with MRgART using the ViewRay MRIdian System (Viewray, USA) at this clinic. In the 4fx AGC plans, Beam ON(%) according to the patient's motion error was checked to confirm the effect of abdominal gas volume on treatment time. Results: Comparing the Initial plan with the average value of AGC plan, the dose difference was -7 to 0.1% in OAR and decreased by 0.16% on average, and in PTV, the dose decreased by 4.5% to 5.5% and decreased by 5.1% on average. In Adaptive treatment, as the abdominal gas volume increased, the Beam ON(%) decreased. Conclusion: Abdominal gas volume variation causes dose change due to inaccurate electron density matching between tissue and gas. In addition, if the abdominal gas volume increases, the Beam ON(%) decreases, and the treatment time may increase due to the motion error of the patient. Therefore, in MRgART, it is necessary to check the electron density matching and minimize the variability of the abdominal gas.

HEAT TRANSFER CHARACTERISTICS IN A FAST PYROLYSIS REACTOR FOR BIOMASS (바이오매스 급속열분해 반응기내 열전달 특성)

  • Choi, Hang-Seok
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • The characteristics of flow and heat transfer in a bubbling fluidized bed are investigated by means of computational fluid dynamics (CFD). To simulate two-phase flow for the gas and solid flows, Eulerian-Eulerian approach is applied. Attention is paid for a heat transfer from the wall to fluidized bed by bubbling motion of the flow. From the result, it is confirmed that heat transfer is promoted by chaotic bubbling motion of the flow by enhancement of mixing among solid particles. In particular, the vortical flow motion around gas bubble plays an important role for the mixing and consequent heat transfer. Discussion is made for the time and space averaged Nusselt number which shows peculiar characteristics corresponding to different flow regimes.