• Title/Summary/Keyword: Gated 3D thoracic MRI

Search Result 1, Processing Time 0.017 seconds

Quasi-breath-hold (QBH) Biofeedback in Gated 3D Thoracic MRI: Feasibility Study (게이트 흉부자기 공명 영상법과 함께 사용할 수 있는 의사호흡정지(QBH) 바이오 피드백)

  • Kim, Taeho;Pooley, Robert;Lee, Danny;Keall, Paul;Lee, Rena;Kim, Siyong
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.72-78
    • /
    • 2014
  • The aim of the study is to test a hypothesis that quasi-breath-hold (QBH) biofeedback improves the residual respiratory motion management in gated 3D thoracic MR imaging, reducing respiratory motion artifacts with insignificant acquisition time alteration. To test the hypothesis five healthy human subjects underwent two gated MR imaging studies based on a T2 weighted SPACE MR pulse sequence using a respiratory navigator of a 3T Siemens MRI: one under free breathing and the other under QBH biofeedback breathing. The QBH biofeedback system utilized the external marker position on the abdomen obtained with an RPM system (Real-time Position Management, Varian) to audio-visually guide a human subject for 2s breath-hold at 90% exhalation position in each respiratory cycle. The improvement in the upper liver breath-hold motion reproducibility within the gating window using the QBH biofeedback system has been assessed for a group of volunteers. We assessed the residual respiratory motion management within the gating window and respiratory motion artifacts in 3D thoracic MRI both with/without QBH biofeedback. In addition, the RMSE (root mean square error) of abdominal displacement has been investigated. The QBH biofeedback reduced the residual upper liver motion within the gating window during MR acquisitions (~6 minutes) compared to that for free breathing, resulting in the reduction of respiratory motion artifacts in lung and liver of gated 3D thoracic MR images. The abdominal motion reduction in the gated window was consistent with the residual motion reduction of the diaphragm with QBH biofeedback. Consequently, average RMSE (root mean square error) of abdominal displacement obtained from the RPM has been also reduced from 2.0 mm of free breathing to 0.7 mm of QBH biofeedback breathing over the entire cycle (67% reduction, p-value=0.02) and from 1.7 mm of free breathing to 0.7 mm of QBH biofeedback breathing in the gated window (58% reduction, p-value=0.14). The average baseline drift obtained using a linear fit was reduced from 5.5 mm/min with free breathing to 0.6 mm/min (89% reduction, p-value=0.017) with QBH biofeedback. The study demonstrated that the QBH biofeedback improved the upper liver breath-hold motion reproducibility during the gated 3D thoracic MR imaging. This system can provide clinically applicable motion management of the internal anatomy for gated medical imaging as well as gated radiotherapy.