• Title/Summary/Keyword: Gauge Block

Search Result 63, Processing Time 0.037 seconds

Advancing the Gauge Block Interferometer and Automating the Gauge Block Calibration (게이지 블록 간섭계의 선진화 및 완전 자동화)

  • Kang Chu-Shik;Kim Jae-Wan;Suh Ho-Suhng;Lee Won-Kyu;Kim Jong-Ahn
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.547-550
    • /
    • 2005
  • Gauge blocks are the most widely used material measure in length field in industry. The gauge block interferometer, which is the gauge block measuring system, comprises Twyman-Green type interferometer optics and light sources having precisely known wavelengths. This paper describes the work done for advancing the measurement system and automating the measurement process. The advancing of the system was done mainly by exchanging the spectral lamp with the frequency stabilized lasers, and the automation of measurement was achieved by modifying the hardware and developing the automatic measuring software. As the results of this work, the contrast of interferometric fringes of gauge blocks longer than 100 mm s enhanced about 20 times, and the measurement time has reduced down to 50% by automation.

  • PDF

Calibration of the integrating sphere system for correcting the roughness effect in gauge block length measurement by using the Newton's rings interferometer (간섭무늬 분석을 통한 게이지 블록의 거칠기 효과 보정용 광산란장치 교정)

  • Kang C.S.;Kim J.W.;Cho M.J.;Kong H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.47-48
    • /
    • 2006
  • A roughness measuring system which comprises an integrating sphere and a stabilized laser has been fabricated with the aim of measuring the roughness correction value which is necessary in gauge block measurement by optical interferometry. To calibrate the system, a Newton's ring interferometer has been introduced. The method how to calibrate the roughness measurement system has been described.

  • PDF

Evaluation on the Measurement Capability of Gauge Blocks for National Calibration and Test Institutions (길이분야 국가교정검사기관에 대한 게이지블록의 측정능력 평가)

  • Lee, Yong Sang;Eom, Cheon Il;Kang, Chu-Shik;Eom, Tae Bong;Han, Jin Wan;Kirn, Myung Soon;Chung, Myung Sai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.62-66
    • /
    • 1996
  • Since 1980, Korea Research Institute of Standards and Science (KRISS) have performed 8 round robin tests in gauge block measurement in order to evaluate the measurement capability and the state of environment control of National Calibration and Test Institutions. Two sets of five gauge blocks (nominal size : 1, 3, 10, 25, 100 mm) having different thermal expansion coefficients for each set were circulated for the measurement, and the measurement results were collected and analyzed to evaluate the traceability to the standard of KRISS. The method and results of the test are presented.

  • PDF

Review of Gauge R&R Studies by Restricted and Unrestricted Design in the Two-Factor Mixed Model (2인자 혼합모형의 제약과 비제약 설계에 의한 게이지 R&R 연구의 고찰)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.657-665
    • /
    • 2009
  • The paper reviews gauge R&R studies by two-factor mixed models including random and fixed factors. The two-factor mixed models include restricted models and unrestricted models considering the interaction of two factors. This study also classifies the models according to the number of factors, and the combination of various factors such as random factor, fixed factor, block factor and repetition type.

  • PDF

Development of High-Temperature Heat Flux Gauge for Steel Quenching (강재 급속냉각용 고온 열유속게이지 개발)

  • Lee, Jungho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.323-330
    • /
    • 2010
  • The present study was motivated by increasing demands on quantitative measurements of the heat flux through the water cooling and quenching process of hot steel. The local heat flux measurements are employed by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are directly used to measure the heat flux variation during water cooling and quenching of hot steel. The heat flux can be directly achieved by Fourier's law and is also compared with numerical estimation which is solved by inverse heat conduction problem (IHCP). The high-temperature heat flux gauge developed in this study can be applicable to measure cooling rate and history during the actual cooling applications of steelmaking process. In addition, the measurement uncertainty of heat flux is calculated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard.

Study on Image Processing Technique for Inspection of Injected E.V.A Midsole (Injected E.V.A Midsole의 검사를 위한 영상처리 기술에 관한 연구)

  • 강인혁;조연상;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.269-272
    • /
    • 1997
  • It is need to inspect a injected E.V.A midsole automatically in shoe manufacture. We applied image processing technology to inspect a injected E.V.A midsole. Captured image by CCD camera was processed with smoothing and edge detection. We compensated error of length from processed image of gauge block and error by bending strain with the measurement method of interval length for midsole image.

  • PDF

Endoscopic Precise 3D Surface Profiler Based on Continuously Scanning Structured Illumination Microscopy

  • Park, Hyo Mi;Joo, Ki-Nam
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.172-178
    • /
    • 2018
  • We propose a precise 3D endoscopic technique for medical and industrial applications. As the 3D measuring principle, the continuously scanning structured illumination microscopy (CSSIM), which enables to obtain 3D sectional images by the synchronous axial scanning of the target with the lateral scanning of the sinusoidal pattern, is adopted. In order to reduce the size of the probe end, the illumination and detection paths of light are designed as coaxial and a coherent imaging fiber bundle is used for transferring the illumination pattern to the target and vice versa. We constructed and experimentally verified the proposed system with a gauge block specimen. As the result, it was confirmed that the 3D surface profile was successfully measured with $16.1{\mu}m$ repeatability for a gauge block specimen. In order to improve the contrast of the sinusoidal illumination pattern reflected off on the target, we used polarizing optical components and confirmed that the visibility of the pattern was suitable in CSSIM.