• Title/Summary/Keyword: Gaussian curvature

Search Result 72, Processing Time 0.023 seconds

TUBES OF WEINGARTEN TYPES IN A EUCLIDEAN 3-SPACE

  • Ro, Jin Suk;Yoon, Dae Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.359-366
    • /
    • 2009
  • In this paper, we study a tube in a Euclidean 3-space satisfying some equation in terms of the Gaussian curvature, the mean curvature and the second Gaussian curvature.

  • PDF

SOME CHARACTERIZATIONS OF CANAL SURFACES

  • Kim, Young Ho;Liu, Huili;Qian, Jinhua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.461-477
    • /
    • 2016
  • This work considers a particular type of swept surface named canal surfaces in Euclidean 3-space. For such a kind of surfaces, some interesting and important relations about the Gaussian curvature, the mean curvature and the second Gaussian curvature are found. Based on these relations, some canal surfaces are characterized.

ON MINIMAL SURFACES WITH GAUSSIAN CURVATURE OF BIANCHI SURFACE TYPE

  • Min, Sung-Hong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.379-385
    • /
    • 2021
  • We consider the local uniqueness of a catenoid under the condition for the Gaussian curvature analogous to Bianchi surfaces. More precisely, if a nonplanar minimal surface in ℝ3 has the Gaussian curvature $K={\frac{1}{(U(u)+V(v))^2}}$ for any functions U(u) and V (v) with respect to a line of curvature coordinate system (u, v), then it is part of a catenoid. To do this, we use the relation between a conformal line of curvature coordinate system and a Chebyshev coordinate system.

ON SOME GEOMETRIC PROPERTIES OF QUADRIC SURFACES IN EUCLIDEAN SPACE

  • Ali, Ahmad T.;Aziz, H.S. Abdel;Sorour, Adel H.
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.593-611
    • /
    • 2016
  • This paper is concerned with the classifications of quadric surfaces of first and second kinds in Euclidean 3-space satisfying the Jacobi condition with respect to their curvatures, the Gaussian curvature K, the mean curvature H, second mean curvature $H_{II}$ and second Gaussian curvature $K_{II}$. Also, we study the zero and non-zero constant curvatures of these surfaces. Furthermore, we investigated the (A, B)-Weingarten, (A, B)-linear Weingarten as well as some special ($C^2$, K) and $(C^2,\;K{\sqrt{K}})$-nonlinear Weingarten quadric surfaces in $E^3$, where $A{\neq}B$, A, $B{\in}{K,H,H_{II},K_{II}}$ and $C{\in}{H,H_{II},K_{II}}$. Finally, some important new lemmas are presented.

NON-ZERO CONSTANT CURVATURE FACTORABLE SURFACES IN PSEUDO-GALILEAN SPACE

  • Aydin, Muhittin Evren;Kulahci, Mihriban;Ogrenmis, Alper Osman
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.247-259
    • /
    • 2018
  • Factorable surfaces, i.e. graphs associated with the product of two functions of one variable, constitute a wide class of surfaces in differential geometry. Such surfaces in the pseudo-Galilean space with zero Gaussian and mean curvature were obtained in [2]. In this study, we provide new results relating to the factorable surfaces with non-zero constant Gaussian and mean curvature.

A NOTE ON SURFACES IN THE NORMAL BUNDLE OF A CURVE

  • Lee, Doohann;Yi, HeungSu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.211-218
    • /
    • 2014
  • In 3-dimensional Euclidean space, the geometric figures of a regular curve are completely determined by the curvature function and the torsion function of the curve, and surfaces are the fundamental curved spaces for pioneering study in modern geometry as well as in classical differential geometry. In this paper, we define parametrizations for surface by using parametric functions whose images are in the normal plane of each point on a given curve, and then obtain some results relating the Gaussian curvature of the surface with curvature and torsion of the given curve. In particular, we find some conditions for the surface to have either nonpositive Gaussian curvature or nonnegative Gaussian curvature.

Classification of Ruled Surfaces with Non-degenerate Second Fundamental Forms in Lorentz-Minkowski 3-Spaces

  • Jung, Sunmi;Kim, Young Ho;Yoon, Dae Won
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.579-593
    • /
    • 2007
  • In this paper, we study some properties of ruled surfaces in a three-dimensional Lorentz-Minkowski space related to their Gaussian curvature, the second Gaussian curvature and the mean curvature. Furthermore, we examine the ruled surfaces in a three-dimensional Lorentz-Minkowski space satisfying the Jacobi condition formed with those curvatures, which are called the II-W and the II-G ruled surfaces and give a classification of such ruled surfaces in a three-dimensional Lorentz-Minkowski space.

  • PDF

CONSTANT CURVATURE FACTORABLE SURFACES IN 3-DIMENSIONAL ISOTROPIC SPACE

  • Aydin, Muhittin Evren
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.59-71
    • /
    • 2018
  • In the present paper, we study and classify factorable surfaces in a 3-dimensional isotropic space with constant isotropic Gaussian (K) and mean curvature (H). We provide a non-existence result relating to such surfaces satisfying ${\frac{H}{K}}=const$. Several examples are also illustrated.

SURFACES FOLIATED BY ELLIPSES WITH CONSTANT GAUSSIAN CURVATURE IN EUCLIDEAN 3-SPACE

  • Ali, Ahmed T.;Hamdoon, Fathi M.
    • Korean Journal of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.537-554
    • /
    • 2017
  • In this paper, we study the surfaces foliated by ellipses in three dimensional Euclidean space ${\mathbf{E}}^3$. We prove the following results: (1) The surface foliated by an ellipse have constant Gaussian curvature K if and only if the surface is flat, i.e. K = 0. (2) The surface foliated by an ellipse is a flat if and only if it is a part of generalized cylinder or part of generalized cone.