• Title/Summary/Keyword: Gel polymer electrolyte

Search Result 107, Processing Time 0.025 seconds

Study for Photovoltaic Characteristics of Gel Type Dye Sensitized Solar Cells (젤형 염료 태양전지의 광전변환 특성에 관한 연구)

  • Park, Byung-Wook;Kwak, Dong-Joo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.168-174
    • /
    • 2009
  • In this paper Gel polymer electrolyte using Poly(Vdf-HFP) was fabricated and compared with liquid type electrolyte. The chemical structure and ingredients of fabricated gel electrolyte was investigated and identified to gel polymer electrolyte by FTIR, gel electrolyte was verified to polymer state by SEM From the experiment result, the better component ratio of Propylene carbonate and Diethyl carbonate for gel type electrolyte was 5 : 5. The conversion efficiency of fabricated DSCs using gel electrolyte was $3{\sim}4[%]$, expected to alternate with liquid type electrolyte.

Improvement in Long-Term Stability and Photovoltaic Performance of UV Cured Resin Polymer Gel Electrolyte for Dye-Sensitized Solar Cell

  • Park, Geun Woo;Hwang, Chul Gyun;Jung, Jae Won;Jung, Young Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4093-4097
    • /
    • 2012
  • We introduced a new UV-cured resin polymer gel as an electrolyte for dye-sensitized solar cells (DSSCs) that is cured with UV irradiation to form a thin film of UV-cured resin polymer gel in the cells. The gel film was characterized and its potential for use as an electrolyte in DSSCs was investigated. This new UV-cured resin polymer gel was successfully applied as a gel polymer electrolyte in DSSCs overcoming the problems associated with the liquid electrolytes in typical DSSCs. The effect of ${\gamma}$-butylrolactone (GBL) on the long-term stability and photovoltaic performance in DSSCs using this UV-cured resin polymer gel electrolyte was also investigated. The results of the energy conversion efficiency, ionic conductivity and Raman spectra of the UV-cured resin polymer gel electrolyte with the addition of 6 wt % GBL to the UV-cured resin polymer electrolyte showed good long-term stability and photovoltaic performance for the DSSCs with the UV-cured polymer gel electrolyte.

Polymer Gel Electrolytes for EDLCs (EDLC용 폴리머 겔 전해질)

  • 정세일;정현철;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.11a
    • /
    • pp.351-357
    • /
    • 2003
  • The optimum polymer gel electrolyte composition ratio was 23 : 66 : 11 wt% of P(VdF-co-HFP) : PVP =20 : 3), (PC: EC =44 : 22) and TEABF$_4$. And the optimal thickness of polymer gel electrolyte was 50 ${\mu}{\textrm}{m}$. The electrochemical characteristics result of unit cell were 31.41 Fig of specific capacitance, and 3.21$\times$10$^{-3}$ S/cm of ion conductivity. Ion conductivity of polymer gel electrolytes decreased according to added PVP through impedance analysis, and it was higher in 7 wt%, but electrochemical characteristics of unit cell were better in 3 wt% PVP. And for excellent ion conductivity of polymer gel electrolytes, the use of a thin layer electrolyte(20 $\mu\textrm{m}$) was an effective method, but with unit cell application, the best thickness was 50 $\mu\textrm{m}$. Unit cell showed higher capacitance and more stable electrochemical performance when hot pressed between polymer gel electrolyte and electrode. This results from enhancement of the physical contact between the electrode and the polymer gel electrolyte and good accessibility of the liquid electrolyte to the electrode surface.

  • PDF

A Study on Electrochemical Properties of Acrylate-based Gel Polymer Electrolyte with Ethylene Oxide Group (Ethylene Oxide기를 갖는 Acrylate계 Gel Polymer Electrolyte의 전기화학적 특성에 관한 연구)

  • Kim, Hyun-Soo;Shin, Jung-Han;Moon, Seong-In;Oh, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.608-614
    • /
    • 2004
  • The gel polymer electrolyte was prepared by radical polymerization using tetra(ethylene glycol) diacrylate and tri(ethylene glycol) dimethacrylate to investigate affect of the number of ethylene oxide. The gel polymer electrolyte showed good electrochemical stability up to 4.5 V vs. Li/Li and high ionic conductivity at various temperatures. The lithium-ion polymer batteries with the gel polymer electrolyte, tetra(ethylene glycol) diacrylate- and tri(ethylene glycol) dimethacrylate-based, also represented good electrochemical performances such as rate capability, low-temperature performances and cycleability. However, the cell with tri(ethylene glycol) dimethacrylate, which has three ethylene oxide, showed better electrochemical performance.

Preparation of Gel Polymer Electrolyte Membranes of Polyvinyl Alcohol and Poly (acrylic acid) for Zn Air Batteries (아연공기전지를 위한 Polyvinyl Alcohol과 Poly (acrylic acid)의 블랜드를 이용한 겔 고분자 전해질막의 제조)

  • Kim, Chanhoon;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.208-215
    • /
    • 2012
  • Gel polymer electrolyte membranes were prepared from blends of polyvinyl alcohol (PVA) and poly (acrylic acid) (PAA), by solution-cast technique. The PAA content in the blend varied from 30 to 80 wt%. With the gel polymer electrolyte membranes, Zn air batteries were fabricated. The gel polymer electrolyte membranes were characterized by means of stress-strain test, impedance test. The Zn air batteries were tested by current interrupt method and galvanostatic discharge method. The tensile strength and tensile modulus decreased with increasing PAA content in the gel polymer electrolyte membrane. On the other hand, the ionic conductivity increased with increasing PAA content. The effect of ionic conductivity trend of the gel polymer electrolyte membrane in the Zn air battery was confirmed through current interrupt method and galvanostatic discharge method experiments. The battery with higher PAA content gel polymer electrolyte membrane showed lower IR drop and higher discharge capacity.

리튬고분자 이차전지의 전기적 전기화학적 특성

  • 박수길;박종은;손원근;류부형;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.159-162
    • /
    • 1998
  • The new type polymer electrolyte composed of polyacrylonitrile(PAN) baed polymer electrolyte contain LiClO$_4$-EC/PC and LiPF$\sub$6/-EC/PC were developed for the weightless and long or life time of lithium polymer battery system with using polyaniline electrode. The gel type electrolytes were prepared by PAN at different lithium salts in the glove box. We prepared for polymer electrolyte with knife casting method. The minimum thickness of PAN gel electrolyte for the slim type is about <400∼500$\mu\textrm{m}$. These gel electrolytes showed good compatibility with lithium electrode. The test cell of Li/polymer electrolyte/Lithium cobalt oxide solid state cell which was prepared by different lithium salt was researched by electrochemical technique. Resistance of polymer electrolyte which consist of LiClO$_4$ is more less than that of LiPF$\sub$6/ and cycle life is more longer than that of LiPF$\sub$6/.

  • PDF

Electric and Electrochemical Characteristic of PMMA-PEO Gel Electrolyte for Rechargeable Lithium Battery

  • 박수길;박종은;이홍기;이주성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.768-772
    • /
    • 1998
  • The new type polymer electrolyte composed of polymethyl methacrylate(PMMA) - polyethy leneoxide(PEO) contain $LiClO_4$ -EC/PC was developed for the weightless and long or life time of lithium polymer batery system with using polyaniline electrode. the gel type electrolytes were prepared by PMMA with PEO at different lithium salts in the glove box. The minimum thickness of PMMA-PEO gel electrolyte for the slim type is about(400~450$\mu\textrm{m}$. These gel electrolyte showed good compatibility with lithium electrode. The test cell Li/polymer electrolyte/polyaniline solid state cell which was prepared by different lithium salt was researched by electrochemical technique.

  • PDF

In-situ Cross-linked Gel Polymer Electrolyte Using Perfluorinated Acrylate as Cross-linker (과불소화된 아크릴레이트 가교제로 제조된 직접 가교형 겔 고분자 전해질의 전기화학적 특성)

  • Oh, Si-Jin;Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Myong-Hoon;Lee, Chang-Jin;Kang, Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • The gel polymer electrolyte(GPE) were prepared by in-situ thermal cross-linking reaction of homogeneous precursor solution of perfluorinated phosphate-based cross-linker and liquid electrolyte. Ionic conductivities and electrochemical properties of the prepared gel polymer electrolyte with the various contents of liquid electrolytes and perfluorinated organophosphate-based cross-linker were examined. The stable gel polymer electrolyte was obtained up to 97 wt% of the liquid electrolyte. Ionic conductivity and electrochemical properties of the gel polymer electrolytes with the various chain length of perfluorinated ethylene oxide and different content of liquid electrolytes were examined. The maximum ionic conductivity of liquid electrolyte was measured to be $1.02\;{\times}\;10^{-2}\;S/cm$ at $30^{\circ}C$ using the cross-linker($PFT_nGA$). The electrochemical stability of the gel polymer electrolyte was extended to 4.5 V. The electrochemical performances of test cells composed of the resulting gel polymer electrolyte were also studied to evaluate the applicability on the lithium polymer batteries. The test cell carried a discharge capacity of 136.11mAh/g at 0.1C. The discharge capacity was measured to be 91% at 2C rate. The discharge capacity decreased with increase of discharge rate which was due to the polarization. After 500th charge/discharge cycles, the capacity of battery decreased to be 70% of the initial capacity.

Electrochemical Performances of Lithium-ion Polymer Battery with Polyoxyalkylene Glycol Acrylate-based Gel Polymer Electrolyte (Polyoxyalkylene Glycol Acrylate기 Gel Polymer Electrolyte를 적용한 리튬이온폴리머전지의 전기화학적 특성)

  • Kim, Hyun-Soo;Kim, Sung-Il;Na, Seong-Hwan;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2005
  • In this work, a gel polymer electrolyte (GPE) was prepared using polyoxyalkylene glycol acrylate (POAGA) as a macromonomer LiCoO$_2$/GPE/graphite cells were prepared and their electrochemical properties were evaluated at various current densities and temperatures. The ionic conductivity of the GPE was more than 6.2${\times}$10$^{-3}$ S$.$$cm^{-1}$ / at room temperature. The GPE had good electrochemical stability up to 4.5 V vs. Li/Li$^{+}$. POAGA-based cells were showed good electrochemical performances such as rate capability, low-temperature performance, and cycleability. The cells, also, passed a safety test such as the overcharge and nail-penetration test.t.

Electrochemical Properties of Cross-linked Polyurethane Acrylate-Based Gel Polymer Electrolyte

  • Kim, Hyun-Soo;Kim, Sung-Il;Choi, Gwan-Young;Moon, Seong-In;Kim, Sang-Pil
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.197-201
    • /
    • 2002
  • In this study, a gel polymer electrolyte was prepared from urethane acrylate and its electrochemical performances were evaluated. And, $LiCoO_2/GPE/graphite$ cells were prepared and their performances depending on discharge currents and temperatures were evaluated. The precursor containing $5 vol\%$ curable mixture had a low viscosity relatively. Ionic conductivity of the gel polymer electrolyte at room temperature and $-20^{\circ}C$ was ca. $5.9\times10^{-3}S{\cdot}cm^{-1}\;and\;1.7\times10^{-3}S{\cdot}cm^{-1}$, respectively. GPE showed electrochemical stability up to potential of 4.5V vs. $Li/Li^+.LiCoO_2/GPE/graphite$ cell showed a good high-rate and a low-temperature performance.