• 제목/요약/키워드: Gelatin hydrolysate

검색결과 28건 처리시간 0.028초

Effects of Gelatin Hydrolysates Addition on Technological Properties and Lipid Oxidation of Cooked Sausage

  • Ham, Youn-Kyung;Song, Dong-Heon;Noh, Sin-Woo;Gu, Tae-Wan;Lee, Jae-Hyeok;Kim, Tae-Kyung;Choi, Yun-Sang;Kim, Hyun-Wook
    • 한국축산식품학회지
    • /
    • 제40권6호
    • /
    • pp.1033-1043
    • /
    • 2020
  • This study investigated the impacts of gelatin hydrolysate addition on the technological properties and lipid oxidation stability of cooked sausage. Gelatin hydrolysate was prepared from pork and duck skin gelatin, through stepwise hydrolysis using collagenase and pepsin. The cooked sausages were formulated without gelatin (control) or with 1% pork skin gelatin, 1% duck skin gelatin, 1% pork skin gelatin hydrolysate, and 1% duck skin gelatin hydrolysate. The pH, color characteristics, protein solubility, cooking loss, and textural properties of cooked sausages were evaluated, and the 2-thiobarbituric acid reactive substances (TBARS) value was measured weekly to determine lipid oxidation stability during 4 wk of refrigerated storage. Enzymatic hydrolysis of gelatin decreased protein content and CIE L* but increased redness and yellowness (p<0.05). When 1% gelatin or gelatin hydrolysate was incorporated in cooked sausage, however, little to no impacts on pH value, moisture content, protein content, color characteristics, protein solubility, and cooking loss were found (p>0.05). The addition of 1% duck skin gelatin hydrolysate increased the cohesiveness and chewiness of cooked sausages. The inclusion of 1% duck skin gelatin accelerated lipid oxidation of cooked sausages during refrigerated storage (p<0.05), whereas duck skin gelatin hydrolysate caused a lower TBARS value in cooked sausage compared to duck skin gelatin. The results show comparable effects of gelatin and gelatin hydrolysate addition on the technological properties of cooked sausages; however, the oxidative stability of raw materials for gelatin extraction should be evaluated clearly in further studies.

3단계 막효소반응기에서 연속적으로 생산된 어피 및 우피 젤라틴 가수분해물의 항산화활성 비교 (Comparison of Antioxidative Activity on Fish and Bovine Skin Gelatin Hydrolysates Produced in a Three-Step Membrane Enzyme Reactor)

  • 김세권;박표잠;송병권;김종배
    • KSBB Journal
    • /
    • 제15권6호
    • /
    • pp.635-643
    • /
    • 2000
  • To compare the antioxidative activities of fish skin and bovine skin gelatin hydrolysate, gelatin hydrolysates from Alaska pollack and bovine skin were prepared by various enzymatic hydrolysis methods (1st step, Alcalase; 2nd step, pronase E; 3rd step, collagenase) using a continuous three-step membrane reactor. The molecular weight distributions of the 1st, 2nd and 3rd step hydrolysates were 7∼10 kDa, 2∼5 kDa and 0.7∼0.9 kDa, respectively. The antioxidative activity of fish skin gelatin hydrolysate was stronger than that of bovine skin gelatin hydrolysate, and in particular, both of 2nd step hydrolysates showed more antioxidative activity than hydrolysates of any other step. The optimum antioxidative activity concentration of the 2nd step hydeolysates of fish and boving skin were 1% (w/w) in a linoleic acid water-alcohol emulsion. In cultured cells exposed to t-butyl hydroperoxide (t-BHP), the 2nd step hydrolysate of fish skin gelatin delayed cell death most. These results suggest that the antioxidative activity of fish skin gelatin hydrolysate is higher than that of bovine skin gelatin hydrolysate because of their different amino acid contents.

  • PDF

Fractionation of Gelatin Hydrolysates with Antioxidative Activity from Alaska Pollock Surimi Refiner Discharge

  • Park, Chan-Ho;Kim, Hyung-Jun;Kang, Kyung-Tae;Park, Joo-Dong;Heu, Min-Soo;Park, Jae-W.;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제12권3호
    • /
    • pp.163-170
    • /
    • 2009
  • This study was conducted to obtain the gelatin fraction with a high anti oxidative activity from Alaska pollock surimi by-products using a two-step enzymatic hydrolysis and ultrafiltration. Among gelatin hydrolysates from refiner discharge of Alaska Pollock surimi, the highest antioxidative activity (81.5%) resulted from gelatin hydrolysate sequentially treated with Pronase E and Flavourzyme each for 2 hr. However, no difference was seen in the anti oxidative activity of the second hydrolysate (Pronase E-/Flavourzyme-treated hydrolysate) when compared to the permeate fractionated through a 10-kDa membrane. The results suggest that the Pronase E-/Flavourzyme-treated hydrolysate from refiner discharge gelatin of Alaska pollock surimi can be used as a supplementary raw material for improving health functionality.

명태(Theragra chalcogramma) 껍질 유래 젤라틴 가수분해물의 항 HIV-1 효능 (Anti-HIV-1 Activity of Gelatin Hydrolysate Derived from Alaska Pollack Theragra chalcogramma Skin)

  • 박선주
    • 한국수산과학회지
    • /
    • 제49권5호
    • /
    • pp.594-599
    • /
    • 2016
  • Infection with HIV (Human immunodeficiency virus), over time, develops into acquired immunodeficiency syndrome (AIDS). The development of non-toxic and effective anti-HIV drugs is one of the most promising strategies for the treatment of AIDS. In this study, we investigated the anti-HIV-1 activity of gelatin hydrolysates from Alaska pollack skin. Gelatin hydrolysates were prepared using four enzymes (alcalase, flavourzyme, neutrase, and pronase E). Among these, the pronase E gelatin hydrolysate was found to inhibit HIV-1 infection in the human T cell-line MT4. It exhibited inhibitory activity on HIV-1IIIB-induced cell lysis, reverse transcriptase activity, and viral p24 production at noncytotoxic concentrations. Moreover, it decreased the activation of matrix metalloproteinase-2 (MMP-2) in vitro. Because HIV infection-induced activation of MMP-2 can accelerate collagen resolution and collapse of the immune system, pronase E gelatin hydrolysate might prevent the activation of MMP-2 in cells, resulting in collagen stabilization and immune cell homeostasis consistent with anti-HIV activation. These results suggest that pronase E gelatin hydrolysate could potentially be incorporated into a novel therapeutic agent for HIV/AIDS patients.

Antioxidant and ACE Inhibiting Activities of the Rockfish Sebastes hubbsi Skin Gelatin Hydrolysates Produced by Sequential Two-step Enzymatic Hydrolysis

  • Kim, Hyung-Jun;Park, Kwon-Hyun;Shin, Jun-Ho;Lee, Ji-Sun;Heu, Min-Soo;Lee, Dong-Ho;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제14권1호
    • /
    • pp.1-10
    • /
    • 2011
  • This study was conducted to obtain hydrolysates with potent antioxidative activity from rockfish skin gelatin. Gelatin was extracted under high temperature/high pressure using a two-step enzymatic hydrolysis with commercial enzymes such as Alcalase, Flavourzyme, Neutrase, and Protamex. The second rockfish-skin gelatin hydrolysate (SRSGH) was prepared by further incubating the first gelatin hydrolysate (FRSGH), which had been hydrolyzed with Alcalase for 1-h (FRSGH-A1), with Flavourzyme for 2-h (SRSGH-F2). The second gelatin hydrolysate showed higher antioxidative activity of 3.72 as measured by a Metrohm Rancimat and superior angiotensin I-converting enzyme (ACE) inhibiting activity of 0.82 mg/mL. Compared with the gelatin, the relative proportion in SRSGH-F2 was markedly decreased in the 100-kDa peak, whereas it was increased in that less than 100-kDa. The amino acid composition of SRSGH-F2 was rich in glycine (25.9%), proline (10.8%), alanine (9.1%), and glutamic acid (9.1%). In contrast, it was poor in cystine (not detected), methionine (1.6%), tyrosine (0.4%), hydroxylysine (0.9%), and histidine (0.9%). In recent years, demand for natural functional foods has been increasing, and SRSGH-F2 can be used as a functional food ingredient in the food industries. However, further detailed studies on SRSGH-F2 with regard to its antioxidant activity in vivo and the various antioxidant mechanisms are needed.

2단계 막반응기에서 연속적으로 생산된 어피젤라틴 가수분해물의 기능성 (Functional Properties of Fish Skin Gelatin Hydrolysate from a Continuous Two-Stage Membrane Reactor)

  • 김세권;변희국;전유진;조덕제
    • Applied Biological Chemistry
    • /
    • 제37권2호
    • /
    • pp.85-93
    • /
    • 1994
  • 연속식 2단계 막(MWCO 10,000, MWCO 5,000)반응기를 이용하여 어피젤라틴 가수분해물을 제조하여 그 가수분해물의 분자량, 아미노산조성 및 기능성에 대하여 검토하였다. 1단계 젤라틴 가수분해물의 분자량은 $8{\sim}10\;KDa$$4.5{\sim}6.5\;KDa$이 주종을 이루었으며, 2단계 가수분해물의 분자량은 $2{\sim}6\;KDa$ 및 2 KDa 이하의 저분자 펩타이드도 존재하였다. 어피젤라틴의 아미노산조성과 1단계 및 2단계 어피젤라틴 가수분해물의 아미노산조성 사이에는 거의 차이가 없었고, 감칠맛과 단맛에 관련이 있는 아미노산 함량이 전체의 $68{\sim}72%$에 달한 반면, 쓴맛을 내는 아미노산 함량은 $23{\sim}25%$에 불과하였으며, 1단계 가수분해물에 비해 2단계 가수분해물이 단맛과 감칠맛이 더 좋았다. 1단계 및 2단계 가수분해물의 용해도는 모든 pH영역에서 완전히 용해하였으나, 유화성 및 포말성은 거의 나타나지 않았다. 완충능은 2단계 가수분해물이 가장 높았으나, 점도는 모든 pH영역에서 거의 차이가 없었으며, 어피젤라틴 보다는 가수분해물의 점도가 더 낮았다. 그리고 2단계 가수분해물은 등온흡습도가 가장 높아 수분활성 저하제로서 이용할 수 있을 것으로 판단되었다.

  • PDF

Partial Purification of Antioxidative Peptides from Gelatin Hydrolysates of Alaska Pollock Surimi Refiner Discharge

  • Heu, Min-Soo;Park, Chan-Ho;Kim, Hyung-Jun;Park, Jae-W.;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제12권4호
    • /
    • pp.249-257
    • /
    • 2009
  • This study is conducted to partially purify an antioxidative peptide in a two-step gelatin hydrolysate from Alaska pollock surimi refiner discharge, which was obtained by sequential treatment with Pronase E and Flavourzyme. The two-step gelatin hydrolysate was fractionated using chromatographic methods. Based on the same protein concentration of each fraction, the antioxidative activities (85.1-95.4%) of positive fractions fractionated by ion-exchange chromatography were higher than those (27.2-87.8%) from gel filtration. Then, further purification of the positive fractions was performed. Among them, the partially purified A1C1L2G1 and A1C1L2G2 fractions showed 96.2% and 85.1% inhibition, respectively, of linoleic acid peroxidation. The A1C1L2G1 fraction was composed of 15 kinds of amino acids and the predominant amino acids were proline, glycine and alanine. The results obtained in this study suggested that the fraction partially purified through chromatographic methods from the two-step gelatin hydrolysate of Alaska pollock surimi refiner discharge could be useful as a supplementary source for improving health functionality.

대구피 젤라틴의 효소적 가수분해물을 이용한 조미간장의 제조 (Preparation of Imitation Sauce from Enzymatic Hydrolysate of Cod Skin Gelatin)

  • 김세권;안창범;강옥주
    • 한국식품영양과학회지
    • /
    • 제22권4호
    • /
    • pp.470-475
    • /
    • 1993
  • 대구피 젤라틴을 효소적으로 가수분해하여 얻어진 가수분해물의 분자량 분포 및 아미노산 조성을 살펴보고 이 가수분해물을 이용해 조미간장을 제조하였고 그 품질을 시판 간장과 관능적으로 비교, 검토하였다. 가수분해물의 분자량은 5,800Da영역이 주종이었으며 분자량 1,100Da, 1,500Da및 2,700Da정도의 펩티드성 분자도 존재하였다. 아미노산은 단맛을 내는 아미노산(glycine, proline, serine, alanine 및 hydroxypro-line)과 감칠맛, 신맛을 내는 아미노산(glutamic acid, aspartic acid)이 전체의 65.9%를 차지하고 있었다. 반면 쓴맛을 내는 아미노산(arginine, tyrosine, phenylala-nine, valine, leucine, methionine 및 histidine)은 전체의 26.65%에 불과하였다. 가수분해물 10.0g,식염 10.0g, 설탕 3.0g, MSG 0.5g, 카라멜분말 0.1g, 양조식초 3.0$m\ell$, 마늘분말 0.05g, 검은 후추분말 0.1g 및 감초분말 0.2g을 물 100.0$m\ell$에 용해하여 열처리한 다음 여과하여 얻어진 원액과 시판 양조간장을 8 : 2(v:v)의 비율로 혼합하여 제조한 조미간장은 시판 3종류의 화학간장과 비교해 관능적으로 손색이 없었다.

  • PDF

Comparison betwee Bovine Hide and Pigskin Gelatins and Preparation of Gelatin Hydrolysates

  • Shin, Seung-Yong;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • 제4권1호
    • /
    • pp.14-17
    • /
    • 1999
  • Bovine hide and pig skin gelatins were prepared and their molecular weight profiles were examined by SDS-PAGE. The major molecular weights of bovine hide gelatin were 220 kDa, 140kDa, and 130kDa and the weights of pigskin gelatin were 210 kDa, 135kDa and 120kDa. Also , as a typical parameter of rheological property of the gelatin , viscosities of gelatin were measured under various conditions. Gelatin hydrolysates were prepared using typical commerical proteases and their angiotensin converting enzyme inhibitory activities were examined.

  • PDF

Purification and Characterization of Antioxidative Peptides from Bovine Skin

  • Kim, Se-Kwon;Kim, Yong-Tae;Byun, Hee-Guk;Park, Pyo-Jam;Ito, Hisashi
    • BMB Reports
    • /
    • 제34권3호
    • /
    • pp.219-224
    • /
    • 2001
  • To identify the antioxidative peptides in the gelatin hydrolysate of bovine skin, the gelatin was hydrolyzed with serial digestions in the order of Alcalase, pronase E, and collagenase using a three-step recycling membrane reactor. The second enzymatic hydrolysate (hydrolyzed with pronase E) was composed of peptides ranging from 1.5 to 4.5 kDa, and showed the highest antioxidative activity, as determined by the thiobarbituric acid method. Three different peptides were purified from the second hydrolysate using consecutive chromatographic methods. This included gel filtration on a Sephadex G-25 column, ion-exchange chromatography on a SP-Sephadex C-25 column, and high-performance liquid chromatography on an octadecylsilane chloride column. The isolated peptides were composed of 9 or 10 amino acid residues. They are: Gly-Glu-Hyp-Gly-Pro-Hyp-Gly-Ala-Hyp (PI), Gly-ProHyp-Gly-Pro-Hyp-Gly-Pro-Hyp-Gly (PII), and Gly-ProHyp-Gly-Pro-Hyp-Gly-Pro-Hyp (PIII), as characterized by Edman degradation and fast-atom bombardment mass spectrometry. The antioxidative activities of the purified peptides were measured using the thiobarbituric acid method, and the cell viability with a methylthiazol tetrazolium assay The results showed that PII had potent antioxidative activity on peroxidation of linoleic acid. Moreover, the cell viability of cultured liver cells was significantly enhanced by the addition of the peptide. These results suggest that the purified peptide, PII, from the gelatin hydrolysate of bovine skin is a natural antioxidant, which has potent antioxidative activity.

  • PDF