• Title/Summary/Keyword: Gene cloning

Search Result 1,586, Processing Time 0.029 seconds

Clostridium acetobutylicum에서의 gene cloning

  • 이상엽
    • The Microorganisms and Industry
    • /
    • v.18 no.3
    • /
    • pp.2-9
    • /
    • 1992
  • 이 논문에서는 대사공학에의 응용에 필수적이며 또한 그 자체의 기술이 학문적으로 상당히 관심을 끄는 C. acetobutylicum에서의 primary metabolic gene cloning에 대하여 정리해 보고자 한다. 우선 C. acetobutylicum의 primary metabolism과 일반적인 대사 조절에 대하여 간략히 살펴보고 이에 관여한 효소들과 gene cloning에 대하여 기술하고자 한다.

  • PDF

Cloning and Expression in Escherichia coli of a Cellulase Gene from Clostridium thermocellum (Clostridium thermocellum의 Cellulase 유전자의 Cloning)

  • 하지홍;한성숙;김욱한;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.5
    • /
    • pp.346-351
    • /
    • 1987
  • A cellulase gene of Clostridium themocellum was transferred to Escherichia coli by molecular cloning with pBR322. The gene was carried in a Hind III digested DNA sequence of about 1.8 kb. This Rind III fragment expressed activities on carboxymethyl cellulose (CMC) and on filter gaper in E. coli. The expression of clostridial cellulase gene in E. coli was studied and compared with the pro-ducts of cellulase genes in C. themocellum.

  • PDF

내열성 호알카리성 Bacillus 속이 생성하는 Protease gene의 E. coli에의 Cloning 및 발현

  • 박재현;성낙계
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.517.1-517
    • /
    • 1986
  • 고온 호알카리성 Bacillus K-17의 Protease gene의 구조해명과 성질을 알기 위해서, E. coli HB101에 pER 322를 Vector로 하여 Protease gene을 Cloning하여 형질전환 된 균주를 선정하였다. 선정균주의 pretense activity를 Bacillus K-17의 상대활성도와 매우 유사하였으며 균체외에 보다 많은 효소 활성도를 지니고 있었다. 제한효소 Hind III로 절단하면 약 1.8kb와 0.4kb의 2개의 fragments 가 생성되었으며 Southern hybridization 결과 Cloning 된 gene이 Bacillus K-17에서 유래된 것임이 확인되었다.

  • PDF

Cloning, Sequencing and Expression Analysis of Porcine Uroplakin II Gene

  • Gwon Deuk-Nam;Kim Jin-Hoe
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.90-90
    • /
    • 2002
  • In this study, we report the cloning of the porcine UPII genomic DNA, which contains a putative full-length open reading frame encoding the UPII protein. A comparison of the porcine UPII gene coding sequence with the previously published mouse UPII sequence demonstrates that only the exon sequences are partially conserved. Northern and immunohistochemical analyses show that the porcine UPII gene is expressed only in the urothelium and that the protein specifically localizes to urothelial superficial cells. (omitted)

  • PDF

Cloning and Overexpression of the Cdd Gene Encoding Cytidine Deaminase from Salmonella typhimurium

  • Lee, Sang-Mahn
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.1
    • /
    • pp.56-59
    • /
    • 2003
  • The Salmonella typhimurium cdd gene encoding cytidine deaminase (cyti-dine/2'-deoxycytidine aminohydrolase; EC 3.5.4.5.) was isolated through shotgun clon-ing by complementation of the E. coli odd mutation. By subsequent deletion and sub-cloning from the original 3.7 Kb of EcoRI insert (pSAMI), the precise region of the cdd structural gene is located around the BglII site in the middle part of 1.7 Kb of NruI/PvuI segment. The 1.7 Kb containing odd gene wag subcloned to the pUC18 vector and the nucleotide sequence of the cdd gene was determined. When the putative ribosorne-binding site (Shine-Dalgarno sequence) and initiation codon were predicted to be GAGG at the position 459 and ATG at the position 470, respectively, there was an open reading frame of 885 nucleotides, encoding an 294 amino acid protein. The cdd gene expression in E. coli JF611/pSAMI was amplified about 50 fold compared to that of the wild type. The cdd gene expression was maintained in the stationary phase after rea-ching the peak in the late logarithmic phase.

Positional Cloning and Phenotypic Characterization of a New Mutant Mouse with Neuronal Migration Abnormality

  • Park, Chankyu;Ackerman, Susan-L
    • Proceedings of the KSAR Conference
    • /
    • 2001.10a
    • /
    • pp.14-17
    • /
    • 2001
  • Positional cloning (map-based cloning) of mutations or genetic variations has been served as an invaluable tool to understand in-vivo functions of genes and to identify molecular components underlying phenotypes of interest. Mice homozygous for the cerebellar deficient folia (cdf) mutation are ataxic, with cerebellar hypoplasia and abnormal lobulation of the cerebellum. In the cdf mutant cerebellum approximately 40% of Purkinje cells are ectopically located within the white matter and the inner granule cell layer (IGL). To identify the cdf gene, a high-resolution genetic map for the cdf-gene-encompassing region was constructed using 1997 F2 mice generated from C3H/HeSnJ-cdf/cdf and CAST/Ei intercross. The cdf gene showed complete linkage disequilibrium with three tightly linked markers D6Mit208, D6Mit359, and D6Mit225. A contig using YAC, BAC, and P1 clones was constructed for the cdf critical region to identify the gene. A deletion in the cdf critical region on chromosome 6 that removes approximately 150kb of DNA was identified. A gene associated with this deletion was identified using cDNA selection. cdf mutant mice with the transgenic copy of the identified gene restored the brain abnormalities of the mutant mice. The positional cloning of cdf gene provides a good example showing the identification of a gene could lead to finding a new component of important molecular pathways.

  • PDF

Molecular Cloning of ${\alpha}$-Amylase Gene from Schwanniomyces CBS 2863 (Schwanniomyces castellii CBS 2863으로부터 ${\alpha}$-Amylase 유전자 Cloning)

  • Park, Jong-Chun;Bai, Suk;Chun, Bai-CHun
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.34-39
    • /
    • 1994
  • The gene encoding ${\alpha}$-amylase of Schwanniomyces castellii was cloned in Saccharomyces cerevisiae. The 5.0-kilobase insert was shown to direct the synthesis of ${\alpha}$-amylase. Southern blot analysis confirmed that this ${\alpha}$-amylase gene was derived from the genomic DNA of Sch. castellii. Immunoblot analysis showed that ${\alpha}$-amylase production from S. cerevisiae transformant was less than that of donor strain. The ${\alpha}$-amylase secreted from S. cerevisiae transformant was shown to be indistinguishable from that of Sch. castellii on the basis of molecular weight and enzyme properties.

  • PDF

The Utility of TAR Vectors Used for Selective Gene Isolation by TAR Cloning. (TAR Cloning에 의한 선별적 유전자 분리에 사용되는 TAR Vectors의 유용성에 관한 연구)

  • 박정은;이윤주;정윤희;김재우;김승일;김수현;박인호;선우양일;임선희
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.322-328
    • /
    • 2003
  • The Transformation-Associated Recombination (TAR) cloning technique allows selective isolation of chromosomal regions and genes from complex genomes. The procedure requires knowledge of relatively small genomic sequences that reside adjacent to the chromosomal region of interest. This technique involves homologous recombination during yeast spheroplast transformation between genomic DNA and a TAR vector that has 5'and 3' gene targeting sequences. In this study, we examined the minimum size of specific hooks required for a single-copy gene isolation and compared the utility of different TAR vectors, radial and unique vectors, by cloning the same single-copy gene. The efficiency of TAR cloning of the hHPRT gene was same using hooks varying from 750 to 63 bp. The number of transformants decreased approximately 20-fold when the TAR vector contained two unique hooks versus using a radial vector, but the percentage of positive recombinants increased over 2-fold when a unique TAR vector was used. Therefore, we suggest that the two-unique TAR vector is suitable for general TAR cloning given its high selectivity, and the radial TAR vector is more suitable when genomic DNA is in limited quantity, for example, DNA isolated from pathological specimens. Moreover, we confirm the minimal length of a unique sequence in a TAR vector is approximately 60 bp for a single-copy gene isolation.

Cloning and Expression of the dapD Gene from Brevibacterium lactofermentum in E. coli (Brevibacterium lactofermentum의 dapD 유전자의 Cloning 및 E. coli에서의 발현)

  • 김옥미;박선희;박혜경;이승언;하대중;이갑랑
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.5
    • /
    • pp.802-805
    • /
    • 2001
  • The dapD gene of Brevibacterium lactofermentum encoding tetrahydrodipicolinate N-succinyl transferase, one of the enzymes involved in lysine biosynthesis, was cloned by complementation of Escherichia coli dapD mutnat. The recombinant plasmid pLS1 was found to contain a 3.6 kb DNA fragment. Southern hybridization analysis confirmed that the cloned DNA fragment originated from B. lactofermentum. The data of L-lysine production showed that the B. lactofermentum dapD gene was expressed in E. coli.

  • PDF

Molecular Cloning and Expression of Bacillus pasteurii Urease Gene in Escherichia coli (B. pasteurii Urease 유전인자의 E. coli의 복제와 발현)

  • Kim, Sang-Dal;John Spizizen
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.297-302
    • /
    • 1985
  • The 7.1 Mdal Xbaf fragment of Bacillus pasteurii ATCC 11859 containing gene for urease was inserted into the Xbal site of bifunctional plasmid pGR71, and its urease gene was cloned and expressed in E. coil RRI. But the cloned gene was not expressed in Bacillus subtilis BR151 in consequence of deletion of inserted DNA fragment. The recombinant plasmid thus formed was named pGU66. The restriction map of the plasmid pGU66 was determined, and the size of the plasmid was estimated to be 12.6 Mdal by double digestion of restriction enzymes of the plasmid. The urease of the cloned strain was accumulated in periplasmic space and very similiar to that of donor strains in their enzymatic properties.

  • PDF