• Title/Summary/Keyword: Generic system archetype

Search Result 2, Processing Time 0.015 seconds

Building a Market Share Model of Alternative Fuel Vehicles: From Generic System Archetypes to System Dynamics Modeling (시스템 원형을 활용한 시스템 다이내믹스 모형 구축: 대체연료차량 시장 모형의 예)

  • Kwon, Tae-Hyeong
    • Korean System Dynamics Review
    • /
    • v.9 no.2
    • /
    • pp.27-43
    • /
    • 2008
  • This study investigates market barriers in increasing the market share of Alternative Fuel Vehicles (AFVs). In particular, this study first conceptualizes the AFVs market model with the aid of generic system archetypes suggested by Wolstenholme. Among four generic system archetypes suggested by Wolstenholme, the market structure of AFVs can be explained by the 'relative achievement' archetype. Starting from the generic system archetype, this study extends the model boundary step by step to take account of various model assumptions necessary to simulate the model numerically. If there is a significant network effect on vehicle operating costs, it is difficult to achieve the shift to AFVs even in the long term without a policy intervention because the car market is locked into the current structure. There are several possible policy options to break the 'locked-in' structure of the car market, such as subsidies on vehicles, subsidies on fuels, and a niche management policy.

  • PDF

Policy Impact Analysis of Road Transport Investment via System Dynamics Theory (혼잡해소를 위한 도로건설의 정책효과: 시스템 다이내믹스 이론의 적용)

  • Kwon, Tae-Hyeong
    • Korean System Dynamics Review
    • /
    • v.12 no.1
    • /
    • pp.75-87
    • /
    • 2011
  • Congestion problems can be approached from the viewpoint of system dynamics theory. The relationship between road capacity and congestion can be explained by the 'relative control' archetype among four system archetypes suggested by Wolstenholme. There is a balancing feedback loop between road capacity and road congestion. However, there is another balancing loop between road congestion and car traffic volume, which keeps disrupting the equilibrium of the former loop. A system dynamics model, which is based on a partial adjustment model of induced traffic in the literature, is built to simulate three road building scenarios: 'Expanding investment', 'Balancing investment' and 'Frozen road investment' scenarios. The 'Expanding investment' scenario manages to drop congestion levels by 9% over 30 years, however, causing much higher emissions of $CO_2$ than other scenarios. The trade-off relationship between congestion levels and environmental costs must be taken into consideration for road investment policies.

  • PDF