• Title/Summary/Keyword: Genetic Algorithm

Search Result 4,758, Processing Time 0.031 seconds

Hardware Implementation of Genetic Algorithm for Evolvable Hardware (진화하드웨어 구현을 위한 유전알고리즘 설계)

  • Dong, Sung-Soo;Lee, Chong-Ho
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.27-32
    • /
    • 2008
  • This paper presents the implementation of simple genetic algorithm using hardware description language for evolvable hardware embedded system. Evolvable hardware refers to hardware that can change its architecture and behavior dynamically and autonomously by interacting with its environment. So, it is especially suited to applications where no hardware specifications can be given in advance. Evolvable hardware is based on the idea of combining reconfigurable hardware device with evolutionary computation, such as genetic algorithm. Because of parallel, no function call overhead and pipelining, a hardware genetic algorithm give speedup over a software genetic algorithm. This paper suggests the hardware genetic algorithm for evolvable embedded system chip. That includes simulation results for several fitness functions.

A Study on Genetic Algorithm-based Biped Robot System (유전 알고리즘 기반의 이족보행로봇 시스템에 관한 연구)

  • 공정식;한경수;김진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.135-143
    • /
    • 2003
  • This paper presents the impact minimization of a biped robot by using genetic algorithm. In case we want to accomplish the designed plan under the special environments, a robot will be required to have walking capability and patterns with legs, which are in a similar manner as the gaits of insects, dogs and human beings. In order to walk more effectively, studies of mobile robot movement are needed. To generate optimal motion for a biped robot, we employ genetic algorithm. Genetic algorithm is searching for technology that can look for solution from the whole district, and it is possible to search optimal solution from a fitness function that needs not to solve differential equation. In this paper, we generate trajectories of gait and trunk motion by using genetic algorithm. Using genetic algorithm not only on gait trajectory but also on trunk motion trajectory, we can obtain the smoothly stable motion of robot that has the least impact during the walk. All of the suggested motions of biped robot are investigated by simulations and verified through the real implementation.

Design of Genetic Algorithm-based Parking System for an Autonomous Vehicle

  • Xiong, Xing;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.275-280
    • /
    • 2009
  • A Genetic Algorithm (GA) is a kind of search techniques used to find exact or approximate solutions to optimization and searching problems. This paper discusses the design of a genetic algorithm-based intelligent parking system. This is a search strategy based on the model of evolution to solve the problem of parking systems. A genetic algorithm for an optimal solution is used to find a series of optimal angles of the moving vehicle at a parking space autonomously. This algorithm makes the planning simpler and the movement more effective. At last we present some simulation results.

An Optimization Method Based on Hybrid Genetic Algorithm for Scramjet Forebody/Inlet Design

  • Zhou, Jianxing;Piao, Ying;Cao, Zhisong;Qi, Xingming;Zhu, Jianhong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.469-475
    • /
    • 2008
  • The design of a scramjet inlet is a process to search global optimization results among those factors influencing the geometry of scramjet in their ranges for some requirements. An optimization algorithm of hybrid genetic algorithm based on genetic algorithm and simplex algorithm was established for this purpose. With the sample provided by a uniform method, the compressive angles which also are wedge angles of the inlet were chosen as the inlet design variables, and the drag coefficient, total pressure recovery coefficient, pressure rising ratio and the combination of these three variables are designed specifically as different optimization objects. The contrasts of these four optimization results show that the hybrid genetic algorithm developed in this paper can capably implement the optimization process effectively for the inlet design and demonstrate some good adaptability.

  • PDF

Design of an Intelligent Controller of Mobile Robot Using Genetic Algorithm (제네틱 알고리즘을 이용한 이동로봇의 지능제어기 설계)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.207-212
    • /
    • 2003
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

Fuzzy Logic Controller Design via Genetic Algorithm

  • Kwon, Oh-Kook;Wook Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.612-618
    • /
    • 1998
  • The success of a fuzzy logic control system solving any given problem critically depends on the architecture of th network. Various attempts have been made in optimizing its structure its structure using genetic algorithm automated designs. In a regular genetic algorithm , a difficulty exists which lies in the encoding of the problem by highly fit gene combinations of a fixed-length. This paper presents a new approach to structurally optimized designs of a fuzzy model. We use a messy genetic algorithm, whose main characteristics is the variable length of chromosomes. A messy genetic algorithms used to obtain structurally optimized fuzzy models. Structural optimization is regarded important before neural network based learning is switched into. We have applied the method to the exampled of a cart-pole balancing.

  • PDF

Handling a Multi-Tasking Environment via the Dynamic Search Genetic Algorithm

  • Koh, S.P.;Aris, I.B.;Bashi, S.M.;Chong, K.H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.125-129
    • /
    • 2008
  • A new genetic algorithm for the solution of a multi-tasking problem is presented in this paper. The approach introduces innovative genetic operation that guides the genetic algorithm more directly towards better quality of the population. A wide variety of standard genetic parameters are explored, and results allow the comparison of performance for cases both with and without the new operator. The proposed algorithm improves the convergence speed by reducing the number of generations required to identify a near-optimal solution, significantly reducing the convergence time in each instance.

Genetic Algorithm for Identification of Time Delay Systems from Step Responses

  • Shin, Gang-Wook;Song, Young-Joo;Lee, Tae-Bong;Choi, Hong-Kyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • In this paper, a real-coded genetic algorithm is proposed for identification of time delay systems from step responses. FOPDT(First-Order Plus Dead-Time) and SOPDT(Second-Order Plus Dead-Time) systems, which are the most useful processes in this field, but are difficult for system identification because of a long dead-time problem and a model mismatch problem. Genetic algorithms have been successfully applied to a variety of complex optimization problems where other techniques have often failed. Thus, the modified crossover operator of a real-code genetic algorithm is proposed to effectively search the system parameters. The proposed method, using a real-coding genetic algorithm, shows better performance characteristics when compared to the usual area-based identification method and the directed identification method that uses step responses.

Pacman Game Reinforcement Learning Using Artificial Neural-network and Genetic Algorithm (인공신경망과 유전 알고리즘을 이용한 팩맨 게임 강화학습)

  • Park, Jin-Soo;Lee, Ho-Jeong;Hwang, Doo-Yeon;Cho, Soosun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.261-268
    • /
    • 2020
  • Genetic algorithms find the optimal solution by mimicking the evolution of natural organisms. In this study, the genetic algorithm was used to enable Pac-Man's reinforcement learning, and a simulator to observe the evolutionary process was implemented. The purpose of this paper is to reinforce the learning of the Pacman AI of the simulator, and utilize genetic algorithm and artificial neural network as the method. In particular, by building a low-power artificial neural network and applying it to a genetic algorithm, it was intended to increase the possibility of implementation in a low-power embedded system.