• Title/Summary/Keyword: Genetic Algorithm

Search Result 4,758, Processing Time 0.034 seconds

Design of a Fuzzy Logic Controller Using Response Surface Methodology (반응표면분석법을 이용한 퍼지제어기 설계)

  • 이세헌
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.591-597
    • /
    • 1999
  • When fuzzy logic controllers which are designed based on plant models and intuitive base are applied to real plants, the control systems may not give satisfactory control results due to the modeling error and the lack of knowledge on the plants. In that case. the controller must be retuned by adjusting the control parameters; this retuning process may require a large number of trial-and-error evaluations and thus much time and cost. In order to resolve these problems, we propose a systematic and efficient procedure for designing a fuzzy logic controller using response surface methodology. First wc select the initial optimal conditions of control parameters using a genetic algorithm, in which a nominal plant model with intrinsic modeling errors is used. And then we determine the tinal optimal conditions of the control parameters using response surface methodology. Computer simulations are performed to verify the capability of the proposed method.

  • PDF

An Application of GP-based Prediction Model to Sunspots

  • Yano, Hiroshi;Yoshihara, Ikuo;Numata, Makoto;Aoyama, Tomoo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.523-523
    • /
    • 2000
  • We have developed a method to build time series prediction models by Genetic Programming (GP). Our proposed CP includes two new techniques. One is the parameter optimization algorithm, and the other is the new mutation operator. In this paper, the sunspot prediction experiment by our proposed CP was performed. The sunspot prediction is good benchmark, because many researchers have predicted them with various kinds of models. We make three experiments. The first is to compare our proposed method with the conventional methods. The second is to investigate about the relation between a model-building period and prediction precision. In the first and the second experiments, the long-term data of annual sunspots are used. The third is to try the prediction using monthly sunspots. The annual sunspots are a mean of the monthly sunspots. The behaviors of the monthly sunspot cycles in tile annual sunspot data become invisible. In the long-term data of the monthly sunspots, the behavior appears and is complicated. We estimate that the monthly sunspot prediction is more difficult than the annual sunspot prediction. The usefulness of our method in time series prediction is verified by these experiments.

  • PDF

Design and Evaluation of a Rotation Table using Air Bearings for Electron Beam Mastering (전자빔 마스터링을 위한 공기베어링 응용 고진공 회전테이블의 설계 및 진공특성 평가)

  • Khim, Gyung-Ho;Song, Chang-Kyu;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.132-138
    • /
    • 2008
  • Recently, mastering processes for high density optical disc such as Blu-ray disc rely on electron beams, which are operable in only vacuum. In the mastering process, one of the most important tasks is to design precision stages for providing precise positioning of the works with respect to the source in a high vacuum environment. In this paper, we have developed a precision rotation table usable in the electron beam mastering. The rotation table adopted air bearings for a high positioning repeatability and velocity stability. The air leakage from the air bearings has been minimized by employing the differential exhaust scheme using three steps of air drain. The design parameters such as diameters of exhaust lines, seal lengths, and pumping speeds were decided according to the optimization method using genetic algorithm. The performance on the vacuum level of the rotation table was evaluated experimentally and theoretically. The results indicate that a vacuum level of $10^{-4}$ Pa is achieved with operation of air bearings in a vacuum chamber, which is sufficient for the electron beam mastering.

Economic Design of Variable Sample Size ${\bar{X}}$ Control Chart Using a Surrogate Variable (대용변수를 이용한 가변형 부분군 크기 ${\bar{X}}$ 관리도의 경제적 설계)

  • Lee, Tae Hoon;Lee, Min Koo;Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Jooho
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.943-956
    • /
    • 2017
  • Purpose: This paper proposes a VSS(Variable Sample Size) ${\bar{X}}$ control chart using surrogate variable and shows its effectiveness compared with FSS(Fixed Sample Size) ${\bar{X}}$ control chart using either performance variable or surrogate variable. Methods: The expected cost function of VSS ${\bar{X}}$ control chart is derived. The optimal designs are then found for numerical examples using a GA(genetic algorithm) and compared to those of the FSS ${\bar{X}}$ control charts. Results: Computational results show that VSS ${\bar{X}}$ control chart using surrogate variables is superior to FSS ${\bar{X}}$ control chart using either performance variable or surrogate variable from the economic view points. Conclusion: The proposed VSS ${\bar{X}}$ control chart will be useful in industry fields where a performance variable is not avaliable or too costly.

Study of Furniture Design Utilizing 3D Printers Joris Laarman (요리스 라만(Joris Laarman)의 3D프린터를 활용한 가구디자인에 관한 연구)

  • Lee, Hyun Jung
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.2
    • /
    • pp.128-136
    • /
    • 2016
  • Digital designs that appear in the three-dimensional virtual space by the digital type are designed as there is not an image created with an organic artificially generated (Creation) and representation (Modifying), developed by the specific environment given. The advanced digital design will produce a result with an algorithm according to a mathematical operation and the environment and has the nature of generating the real world, changes, development and affinity (Genetic Process). The digital design process is largely defined by a set of processes that are consistently designed to integrate form of creation, reproduction, proceeds in three steps, while the manufacture and assembly as a form of maintenance as possible the intended form of control data from the concept of building. By Joris Laarman 3D printer design is a simulation created by the digital process by the various algorithms and design achieved through the development of 3D printers, such as new materials and MX3D. From the mold production of a complex whole by using a robot and other digital production tool extracts a variety of forms.

Optimization for Drop and Lift of the SONAR Under the Limited Installment Space Using the GA (GA를 이용한 제한된 설치환경 하에서의 소나 투하 및 인양 장비의 최적화)

  • Park, Seong-Hak;Chung, Won-Jee;Kim, Hyo-Gon;Choi, Jong-Kap
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.321-328
    • /
    • 2016
  • Cranes are generally used to drop or lift equipment or materials. The present study focuses on equipment used for dropping and lifting the sonar system for undersea exploration. This study deals with a GA-based MATLAB$^{(R)}$ simulation for the design optimization of a new overboarding prototype with a two degree-of-freedom mechanism, including a parallelogram link, which is efficient in sonar system operation and maintenance. First, the strengths and weaknesses of the existing overboarding mechanisms are analyzed. The new mechanism to solve these problems is then suggested. For the proposed mechanism, the GA-based MATLAB$^{(R)}$ simulation technique is applied to the proposed mechanism to optimize the link lengths and the actuator lengths. By doing this, the mechanism cannot interfere in the hull's internal environment. Hence, the work range of motion (ROM) is satisfied, and good torque-angle properties are obtaind. The developed technology will be helpful in calculating the maximized output torque of the actuator for the application in practice using a similar type of the proposed mechanism.

Optimization of Battery Power Distribution to Improve Fuel Consumption of Fuel Cell Hybrid Vehicle (연료전지 하이브리드 차량의 연비향상을 위한 배터리 동력분배 최적화)

  • Lee, Dong Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.397-403
    • /
    • 2013
  • The demand for eco-friendly and higher fuel economy vehicles has helped develop eco-friendly and fuel-efficient vehicles such as hybrid vehicles. In a hybrid vehicle, the change in the battery charge after driving should be added to the fuel consumption as the equivalent fuel usage based on its own characteristics. Thus, the fuel efficiency of a hybrid vehicle cannot be improved simply by increasing the battery capacity. In this study, I attempt to improve the total fuel economy of a hybrid vehicle, including the equivalent fuel consumption, by modeling a fuel cell hybrid vehicle using Matlab Simulink, analyzing the usage zone of the fuel cell with the existing control strategy, and optimizing the power distribution of the battery and fuel cell in the main usage zone of the fuel cell.

Parallel Processing Based Decompositon Technique for Efficient Collaborative Optimization (효율적 분산협동최적설계를 위한 병렬처리 기반 분해 기법)

  • Park, Hyeong-Uk;Kim, Seong-Chan;Kim, Min-Su;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.883-890
    • /
    • 2001
  • In practical design studies, most of designers solve multidisciplinary problems with large size and complex design system. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder the original design processes to minimize total computational cost. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

Economic-Statistical Design of Double Sampling T2 Control Chart under Weibull Failure Model (와이블 고장모형 하에서의 이중샘플링 T2 관리도의 경제적-통계적 설계 (이중샘플링 T2 관리도의 경제적-통계적 설계))

  • Hong, Seong-Ok;Lee, Min-Koo;Lee, Jooho
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.471-488
    • /
    • 2015
  • Purpose: Double sampling $T^2$ chart is a useful tool for detecting a relatively small shift in process mean when the process is controlled by multiple variables. This paper finds the optimal design of the double sampling $T^2$ chart in both economical and statistical sense under Weibull failure model. Methods: The expected cost function is mathematically derived using recursive equation approach. The optimal designs are found using a genetic algorithm for numerical examples and compared to those of single sampling $T^2$ chart. Sensitivity analysis is performed to see the parameter effects. Results: The proposed design outperforms the optimal design of the single sampling $T^2$ chart in terms of the expected cost per unit time and Type-I error rate for all the numerical examples considered. Conclusion: Double sampling $T^2$ chart can be designed to satisfy both economic and statistical requirements under Weibull failure model and the resulting design is better than the single sampling counterpart.

Vibration Control of Beam using Distributed PVDF sensor and PZT actuator (분포형 압전 필름 감지기와 압전 세라믹 작동기를 이용한 보의 진동 제어)

  • 박근영;유정규;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.413-417
    • /
    • 1997
  • Distributed piezoelectric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF are used in this study, the former as an actuator and the latter as a sensor for our integrated structure. For the PZT actuator, the position and size have been optimized. Optimal electrode shape of the PVDF sensor has been determined. For multi-mode vibration control, we have used two PZT actuators and a PVDF sensor. Electrode shading of PVDF is more powerful for modal force adjustment than the sizing and positioning of PZT. Finite element method is used to model the structure that includes the PZT actuator and the PVDF sensor. By deciding on or off of each PZT segment, the length and the location of the PZT actuator are optimize. Considering both of the host structure and the optimized actuators, it is designed that the active electrode width of PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Sensor is designed to minimize the observation spill-over. Modal control forces for the residual(uncontrolled) modes have been minimized during the sensor design. Genetic algorithm, which is suitable for this kind of discrete problems, has been utilized for optimization. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF