• Title/Summary/Keyword: Genetic Operator

Search Result 159, Processing Time 0.024 seconds

Incorporating Genetic Operators into Optimizing Highway Alignments (도로선형최적화를 위한 유전자 연산자의 적용)

  • Kim, Eung-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.43-54
    • /
    • 2004
  • This study analyzes characteristics and applicability of genetic algorithms and genetic operators to optimize highway alignments. Genetic algorithms, one of artificial intelligence techniques, are fast and efficient search algorithms for generating, evaluation and finding optimal highway alignment alternatives. The performance of genetic algorithms as an optimal search tool highly depends on genetic operators that are designed as a problem-specific. This study adopts low mutation operators(uniform mutation operator, straight mutation operator, non-uniform mutation operator whole non-uniform mutation operator) to explore whole search spaces, and four crossover operators(simple crossover operator, two-point crossover operator, arithmetic crossover operator, heuristic crossover operator) to exploit food characteristics of the best chromosome in previous generations. A case study and a sensitivity analysis have shown that the eight problem-specific operators developed for optimizing highway alignments enhance the search performance of genetic algorithms, and find good solutions(highway alignment alternatives). It has been also found that a mixed and well-combined use of mutation and crossover operators is very important to balance between pre-matured solutions when employing more crossover operators and more computation time when adopting more mutation operators.

Optimization of Gable Frame Using the Modified Genetic Algorithm (개선된 유전자 알고리즘을 이용한 산형 골조의 최적화)

  • Lee, Hong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.4 s.10
    • /
    • pp.59-67
    • /
    • 2003
  • Genetic algorithm is one of the best ways to solve a discrete variable optimization problem. Genetic algorithm tends to thrive in an environment in which the search space is uneven and has many hills and valleys. In this study, genetic algorithm is used for solving the design problem of gable structure. The design problem of frame structure has some special features(complicate design space, many nonlinear constrants, integer design variables, termination conditions, special information for frame members, etc.), and these features must be considered in the formulation of optimization problem and the application of genetic algorithm. So, 'FRAME operator', a new genetic operator for solving the frame optimization problem effectively, is developed and applied to the design problem of gable structure. This example shows that the new opreator has the possibility to be an effective frame design operator and genetic algorithm is suitable for the frame optimization problem.

  • PDF

A Genetic Algorithm with a Mendel Operator for Multimodal Function Optimization (멀티모달 함수의 최적화를 위한 먼델 연산 유전자 알고리즘)

  • Song, In-Soo;Shim, Jae-Wan;Tahk, Min-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1061-1069
    • /
    • 2000
  • In this paper, a new genetic algorithm is proposed for solving multimodal function optimization problems that are not easily solved by conventional genetic algorithm(GA)s. This algorithm finds one of local optima first and another optima at the next iteration. By repeating this process, we can locate all the local solutions instead of one local solution as in conventional GAs. To avoid converging to the same optimum again, we devise a new genetic operator, called a Mendel operator which simulates the Mendels genetic law. The proposed algorithm remembers the optima obtained so far, compels individuals to move away from them, and finds a new optimum.

  • PDF

Effective Robot Path Planning Method based on Fast Convergence Genetic Algorithm (유전자 알고리즘의 수렴 속도 향상을 통한 효과적인 로봇 길 찾기 알고리즘)

  • Seo, Min-Gwan;Lee, Jae-Sung;Kim, Dae-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.25-32
    • /
    • 2015
  • The Genetic algorithm is a search algorithm using evaluation, genetic operator, natural selection to populational solution iteratively. The convergence and divergence characteristic of genetic algorithm are affected by selection strategy, generation replacement method, genetic operator when genetic algorithm is designed. This paper proposes fast convergence genetic algorithm for time-limited robot path planning. In urgent situation, genetic algorithm for robot path planning does not have enough time for computation, resulting in quality degradation of found path. Proposed genetic algorithm uses fast converging selection strategy and generation replacement method. Proposed genetic algorithm also uses not only traditional crossover and mutation operator but additional genetic operator for shortening the distance of found path. In this way, proposed genetic algorithm find reasonable path in time-limited situation.

On Sweeping Operators for Reducing Premature Convergence of Genetic Algorithms (유전 알고리즘의 조기수렴 저감을 위한 연산자 소인방법 연구)

  • Lee, Hong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1210-1218
    • /
    • 2011
  • GA (Genetic Algorithms) are efficient for searching for global optima but may have some problems such as premature convergence, convergence to local extremum and divergence. These phenomena are related to the evolutionary operators. As population diversity converges to low value, the search ability of a GA decreases and premature convergence or converging to local extremum may occur but population diversity converges to high value, then genetic algorithm may diverge. To guarantee that genetic algorithms converge to the global optima, the genetic operators should be chosen properly. In this paper, we analyze the effects of the selection operator, crossover operator, and mutation operator on convergence properties, and propose the sweeping method of mutation probability and elitist propagation rate to maintain the diversity of the GA's population for getting out of the premature convergence. Results of simulation studies verify the feasibility of using these sweeping operators to avoid premature convergence and convergence to local extrema.

Subtour Preservation Crossover Operator for the Symmetric TSP (대칭 순회 판매원문제를 위한 Subtour 보존 교차 연산자)

  • Soak, Sang-Moon;Lee, Hong-Girl;Byun, Sung-Cheal
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.201-212
    • /
    • 2007
  • Genetic algorithms (GAs) are very useful methods for global search and have been applied to various optimization problems. They have two kinds of important search mechanisms, crossover and mutation. Because the performance of GAs depends on these operators, a large number of operators have been developed for improving the performance of GAs. Especially, many researchers have been more interested in a crossover operator than a mutation operator. The reason is that a crossover operator is a main search operator in GAs and it has a more effect on the search performance. So, we also focus on a crossover operator. In this paper we first investigate the drawback of various crossovers, especially subtour-based crossovers and then introduce a new crossover operator to avoid such drawback and to increase efficiency. Also we compare it with several crossover operators for symmetric traveling salesman problem (STSP) for showing the performance of the proposed crossover. Finally, we introduce an efficient simple hybrid genetic algorithm using the proposed operator and then the quality and efficiency of the obtained results are discussed.

Improved Single Feistel Circuit Supporter by A Chaotic Genetic Operator

  • JarJar, Abdellatif
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.165-174
    • /
    • 2020
  • This document outlines a new color image encryption technology development. After splitting the original image into 240-bit blocks and modifying the first block by an initialization vector, an improved Feistel circuit is applied, sponsored by a genetic crossover operator and then strong chaining between the encrypted block and the next clear block is attached to set up the confusion-diffusion and heighten the avalanche effect, which protects the system from any known attack. Simulations carried out on a large database of color images of different sizes and formats prove the robustness of such a system.

A study of selection operator using distance information between individuals in genetic algorithm

  • Ito, Minoru;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1521-1524
    • /
    • 2003
  • In this paper, we propose a "Distance Correlation Selection operator (DCS)" as a new selection operator. For Genetic Algorithm (GA), many improvements have been proposed. The MGG (Minimal Generation Gap) model proposed by Satoh et.al. shows good performance. The MGG model has all advantages of conventional models and the ability of avoiding the premature convergence and suppressing the evolutionary stagnation. The proposed method is an extension of selection operator in the original MGG model. Generally, GA has two types of selection operators, one is "selection for reproduction", and the other is "selection for survival"; the former is for crossover and the latter is the individuals which survive to the next generation. The proposed method is an extension of the former. The proposed method utilizes distance information between individuals. From this extension, the proposed method aims to expand a search area and improve ability to search solution. The performance of the proposed method is examined with several standard test functions. The experimental results show good performance better than the original MGG model.

  • PDF

A New Approach to Solve the TSP using an Improved Genetic Algorithm

  • Gao, Qian;Cho, Young-Im;Xi, Su Mei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.217-222
    • /
    • 2011
  • Genetic algorithms are one of the most important methods used to solve the Traveling Salesman Problem. Therefore, many researchers have tried to improve the Genetic Algorithm by using different methods and operations in order to find the optimal solution within reasonable time. This paper intends to find a new approach that adopts an improved genetic algorithm to solve the Traveling Salesman Problem, and compare with the well known heuristic method, namely, Kohonen Self-Organizing Map by using different data sets of symmetric TSP from TSPLIB. In order to improve the search process for the optimal solution, the proposed approach consists of three strategies: two separate tour segments sets, the improved crossover operator, and the improved mutation operator. The two separate tour segments sets are construction heuristic which produces tour of the first generation with low cost. The improved crossover operator finds the candidate fine tour segments in parents and preserves them for descendants. The mutation operator is an operator which can optimize a chromosome with mutation successfully by altering the mutation probability dynamically. The two improved operators can be used to avoid the premature convergence. Simulation experiments are executed to investigate the quality of the solution and convergence speed by using a representative set of test problems taken from TSPLIB. The results of a comparison between the new approach using the improved genetic algorithm and the Kohonen Self-Organizing Map show that the new approach yields better results for problems up to 200 cities.

Simulation Optimization of Manufacturing System using Real-coded Genetic Algorithm (실수 코딩 유전자 알고리즘을 이용한 생산 시스템의 시뮬레이션 최적화)

  • Park, Kyoung-Jong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.3
    • /
    • pp.149-155
    • /
    • 2005
  • In this paper, we optimize simulation model of a manufacturing system using the real-coded genetic algorithm. Because the manufacturing system expressed by simulation model has stochastic process, the objective functions such as the throughput of a manufacturing system or the resource utilization are not optimized by simulation itself. So, in order to solve it, we apply optimization methods such as a genetic algorithm to simulation method. Especially, the genetic algorithm is known to more effective method than other methods to find global optimum, because the genetic algorithm uses entity pools to find the optimum. In this study, therefore, we apply the real-coded genetic algorithm to simulation optimization of a manufacturing system, which is known to more effective method than the binary-coded genetic algorithm when we optimize the constraint problems. We use the reproduction operator of the applied real-coded genetic algorithm as technique of the remainder stochastic sample with replacement and the crossover operator as the technique of simple crossover. Also, we use the mutation operator as the technique of the dynamic mutation that configures the searching area with generations.