• Title/Summary/Keyword: Genetic Responses

Search Result 458, Processing Time 0.03 seconds

FACTORS AFFECTING AGE STRUCTURES AND GENETIC RESPONSES TO TRUNCATION SELECTION SCHEMES IN A POPULATION WITH OVERLAPPING GENERATIONS

  • Ghaffar, A.;Shimizu, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.4
    • /
    • pp.497-507
    • /
    • 1993
  • Four truncation selection schemes (SSs) were framed to predict and compare the age structures and genetic responses under the influence of various factor employing the scheme-specific algorithms. Two paths of selection, sires (bulls' sires) and dams (bulls' dams) to breed young bulls were considered. Among variable factors, four levels (0.3, 0.5, 0.7, 0.9) of precision of evaluation, five levels (0.0, 0.05, 0.10, 0.15, 0.20 genetic standard deviation) of genetic differences among age classes and 4 levels of proportions selected (for bulls' sire, 0.05, 0.10, 0.125, 0.25, and for bulls' dams 0.02, 0.04, 0.05, and 0.10) contemplated on both paths of selection. The number of age classes for bulls' dams and bulls' sires were 4 or 8 and 2 or 4, respectively. The stayability across age classes for bulls' dams was assumed to be 0.80 or 0.60. The candidates for selection for bulls' sires were equally distributed (0.5 or 0.25) across the age classes. The SS1 (selection on same proportions as candidates' distribution) revealed longest generation lengths and lowest yearly genetic responses. The average ages were youngest and yearly genetic responses were highest in SS4 (selection at each age-specific truncation point with the same average genetic superiority of selected parents across the ages) and followed by SS3 (selection at each agespecific truncation point with same predicted genetic values) and SS2 (selection at common truncation point on phenotypic values) in a population with overlapping generations. The results revealed the importance of choosing suitable selection scheme to acquire maximum yearly genetic responses especially when the genetic differences among age classes are large and the precision of evaluation is relatively low.

Genetic Algorithm for Identification of Time Delay Systems from Step Responses

  • Shin, Gang-Wook;Song, Young-Joo;Lee, Tae-Bong;Choi, Hong-Kyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • In this paper, a real-coded genetic algorithm is proposed for identification of time delay systems from step responses. FOPDT(First-Order Plus Dead-Time) and SOPDT(Second-Order Plus Dead-Time) systems, which are the most useful processes in this field, but are difficult for system identification because of a long dead-time problem and a model mismatch problem. Genetic algorithms have been successfully applied to a variety of complex optimization problems where other techniques have often failed. Thus, the modified crossover operator of a real-code genetic algorithm is proposed to effectively search the system parameters. The proposed method, using a real-coding genetic algorithm, shows better performance characteristics when compared to the usual area-based identification method and the directed identification method that uses step responses.

Selection Responses for Milk, Fat and Protein Yields in Zimbabwean Holstein Cattle

  • Mandizha, S.;Makuza, S.M.;Mhlanga, F.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.883-887
    • /
    • 2000
  • One way of evaluating the effectiveness of a dairy breeding program is to measure response to selection. This may be direct or indirect. The objectives of this study were to estimate expected progress for direct selection on milk, fat and protein yields; to estimate the expected correlated responses on indirect selection for milk, fat and protein yields in Zimbabwean Holstein cattle and to establish the effect of selection intensity on responses. The Animal Model contained fixed effects of herd, year of calving, calving month, dry period, milking frequency and additive effects pertaining to cows, sires and dams. AIREML software package was used to analyse the data. The genetic and phenotypic parameters obtained in this study were used to compute direct and correlated responses to selection. Because of the higher heritabilities in first parity, genetic progress was found to be greater when selection was practised on first parity cows as compared to later lactations. It is therefore recommended that older cows in the herd be replaced with improved heifers so as to enhance genetic progress.

Association of the CD226 Genetic Polymorphisms with Risk of Tuberculosis

  • Jin, Hyun-Seok;Park, Sangjung
    • Biomedical Science Letters
    • /
    • v.23 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • Tuberculosis (TB), mainly disseminated by infection of the respiratory tract, remains an unsolved community health problem by Mycobacterium tuberculosis (MTB). However, because of the different susceptibility to MTB, people infected with MTB do not all develop TB. These differences of disease arise from individual genetic susceptibility as well as the property of the microorganisms itself. CD226, one of the genetic factors that influences TB, interact with its ligand PVR and ITGB2. It is induced various cellular responses that contribute multiple innate and adaptive responses. In a previous study, CD226 enhanced immune efficacy induced by Ag85A DNA vaccination that is secreted protein by MTB. The aim of this study was to investigate the association between six genetic polymorphisms of CD226 gene and TB status with Korean population. Our results show that two SNPs of CD226 were identified to associate with tuberculosis. The highest significant SNP was rs17081766 (OR=0.70, CI: 0.54~0.90, $P=5.4{\times}10^{-3}$). According to this study, polymorphisms of CD226 gene affect the outbreak of TB in MTB-infected patients. It is suggested that polymorphism of other genes also associated with immune responses results in susceptibility to TB. The results from this study suggest that not only the characteristics of the microorganism itself but also the genetic background of the individual may affect progression of TB in MTB-infected patients.

Familial congenital myopathy with prominent decremental responses in repetitive nerve stimulation testing

  • Kim, Dayoung;Sunwoo, Il Nam;Oh, Jeeyoung
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.1
    • /
    • pp.53-55
    • /
    • 2021
  • Congenital myasthenic syndromes (CMSs) are rare genetic disorders characterized by weakness and fatigue resulting from impaired neuromuscular transmission. Genetic testing can confirm the diagnosis for some types of CMS; however, variations in genotype, clinical phenotypes, age at disease onset, and responses to treatment make diagnosis very difficult. Here we present two adult patients who had significant decremental responses in repetitive nerve stimulation testing and multi-minicore pathology, and who responded to treatment with a cholinesterase inhibitor.

Recombinant DNA and Protein Vaccines for Foot-and-mouth Disease Induce Humoral and Cellular Immune Responses in Mice

  • Bae, Ji-Young;Moon, Sun-Hwa;Choi, Jung-Ah;Park, Jong-Sug;Hahn, Bum-Soo;Kim, Ki-Yong;Kim, Byung-Han;Song, Jae-Young;Kwon, Dae-Hyuck;Lee, Suk-Chan;Kim, Jong-Bum;Yang, Joo-Sung
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.265-273
    • /
    • 2009
  • Foot-and-mouth disease virus (FMDV) is a small single-stranded RNA virus which belongs to the family Picornaviridae, genus Apthovirus. It is a principal cause of FMD which is highly contagious in livestock. In a wild type virus infection, infected animals usually elicit antibodies against structural and non-structural protein of FMDV. A structural protein, VP1, is involved in neutralization of virus particle, and has both B and T cell epitopes. A RNA-dependent RNA polymerase, 3D, is highly conserved among other serotypes and strongly immunogenic, therefore, we selected VP1 and 3D as vaccine targets. VP1 and 3D genes were codon-optimized to enhance protein expression level and cloned into mammalian expression vector. To produce recombinant protein, VP1 and 3D genes were also cloned into pET vector. The VP1 and 3D DNA or proteins were co-immunized into 5 weeks old BALB/C mice. Antigen-specific serum antibody (Ab) responses were detected by Ab ELISA. Cellular immune response against VP1 and 3D was confirmed by ELISpot assay. The results showed that all DNA- and protein-immunized groups induced cellular immune responses, suggesting that both DNA and recombinant protein vaccine administration efficiently induced Ag-specific humoral and cellular immune responses.

MOGA-Based Structural Design Method for Diagrid Structural Control System Subjected to Wind and Earthquake Loads

  • Kim, Hyun-Su;Kang, Joo-Won
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1598-1606
    • /
    • 2018
  • An integrated optimal structural design method for a diagrid structure and control device was developed. A multi-objective genetic algorithm was used and a 60-story diagrid building structure was developed as an example structure. Artificial wind and earthquake loads were generated to assess the wind-induced and seismic responses. A smart tuned mass damper (TMD) was used as a structural control system and an MR (magnetorheological) damper was employed to develop a smart TMD (STMD). The multi-objective genetic algorithm used five objectives including a reduction of the dynamic responses, additional stiffness and damping, mass of STMD, capacity of the MR damper for the integrated optimization of a diagrid structure and a STMD. From the proposed method, integrated optimal designs for the diagrid structure and STMD were obtained. The numerical simulation also showed that the STMD provided good control performance for reducing the wind-induced and seismic responses of a tall diagrid building structure.

Genetic Parameters and Responses in Growth and Body Composition Traits of Pigs Measured under Group Housing and Ad libitum Feeding from Lines Selected for Growth Rate on a Fixed Ration

  • Nguyen, Nguyen Hong;McPhee, C.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1075-1079
    • /
    • 2005
  • The main objective of this study is to examine genetic changes in growth rate and carcass composition traits in group housed, ad libitum fed pigs, from lines of Large White divergently selected over four years for high and low post-weaning daily gain on a fixed but restricted ration. Genetic parameters for production and carcass traits were also estimated by using average information-restricted maximum likelihood applied to a multivariate individual animal model. All analyses were carried out on 1,728 records of group housed ad libitum fed pigs, and include a full pedigree of 5,324 animals. Estimates of heritability (standard errors in parentheses) were 0.11 (0.04) for lifetime daily liveweight gain (LDG), 0.13 (0.04) for daily carcass weight gain (CDG) and 0.28 (0.06) for carcass backfat (CFT). Genetic correlations between LDG and CDG were highly positive and between LDG and CFT negative, suggesting that selection for lifetime daily gain under commercial conditions of group housing with ad libitum feeding would result in favourable improvement in carcass traits. CFT showed negative genetic correlations with CDG. Correlated genetic responses evaluated as estimated breeding values (EBVs) were obtained from a multivariate animal model-best linear unbiased prediction analysis. After four years of divergent selection for 6 week post-weaning growth rate on restricted feeding, pigs performance tested on ad libitum feeding in groups exhibited changes in EBVs of 6.77 and -9.93 (g/d) for LDG, 4.25 and -7.08 (g/d) for CDG, and -1.42 and 1.55 (mm) for CFT, in the high and low lines, respectively. It is concluded that selection for growth rate on restricted feeding would significantly improve genetic performance and carcass composition of their descendants when group housed and ad libitum fed as is a common commercial practice.

A Study on Dual Response Approach Combining Neural Network and Genetic Algorithm (인공신경망과 유전알고리즘 기반의 쌍대반응표면분석에 관한 연구)

  • Arungpadang, Tritiya R.;Kim, Young Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.361-366
    • /
    • 2013
  • Prediction of process parameters is very important in parameter design. If predictions are fairly accurate, the quality improvement process will be useful to save time and reduce cost. The concept of dual response approach based on response surface methodology has widely been investigated. Dual response approach may take advantages of optimization modeling for finding optimum setting of input factor by separately modeling mean and variance responses. This study proposes an alternative dual response approach based on machine learning techniques instead of statistical analysis tools. A hybrid neural network-genetic algorithm has been proposed for the purpose of parameter design. A neural network is first constructed to model the relationship between responses and input factors. Mean and variance responses correspond to output nodes while input factors are used for input nodes. Using empirical process data, process parameters can be predicted without performing real experimentations. A genetic algorithm is then applied to find the optimum settings of input factors, where the neural network is used to evaluate the mean and variance response. A drug formulation example from pharmaceutical industry has been studied to demonstrate the procedures and applicability of the proposed approach.

Physiological and Genetic Responses of Salt-stressed Tunisian Durum (Triticum turgidum ssp. durum) Cultivars

  • Kim, Sang Heon;Kim, Dae Yeon;Yacoubi, Ines;Seo, Yong Weon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.314-321
    • /
    • 2018
  • Durum (Triticum turgidum L. ssp. durum) is a major crop species cultivated for human consumption worldwide. In Tunisia, salt stress is one of the main problems that limit crop production. 'Mahmoudi' was selected as the most salt-sensitive out of 11 Tunisian durum cultivars. Using the salt-tolerant cultivar 'Om Rabia', resistant and susceptible cultivars were evaluated to compare genetic responses under salt stress. At the fully expanded third leaf stage, salt stress was applied by submerging the pots in 500 mM NaCl for 5 min every day for saline water irrigation in the greenhouse. The treatment was applied for 1 week and salt stress tolerance was determined by changes of growth parameters to the control condition. The salt tolerance trait index and salt tolerance index were calculated and used as selection criteria. The expression levels of TdHKT1;4, TdHKT1;5, and TdSOS1 were examined using qPCR. For further evaluation of physiological responses, salt stress (150 mM NaCl) was additionally applied for 48 h at the fully expanded third-leaf stage. Increased expression of the genes responsible for salt tolerance and proline content in tolerant durum can be used to broaden genetic diversity and provide genetic resources for the durum breeding program.