• Title/Summary/Keyword: Genetically modified rice

Search Result 71, Processing Time 0.026 seconds

Effects of insect-resistant genetically modified rice (Bt-9) cultivation on non-target insect diversity

  • Oh, Sung-Dug;Lim, Myung-Ho;Lee, Bumkyu;Yun, Doh-Won;Sohn, Soo-In;Chang, Ancheol;Park, Soon Ki;Suh, Sang Jae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.28-37
    • /
    • 2018
  • This study was done to develop environmental risk assessments and a biosafety guide for insect-resistant genetically modified rice at a LMO (Living Modified Organism) isolation field. In the LMO quarantine area of Kyungpook National University, the species diversities and population densities of non-target insects found on insect-resistant genetically modified rice (Bt-9) resistant to Cnaphalocrocis medinalis and on non-GM rices (Dongjin and Ilmi) were investigated. The Bt-9 event was therefore evaluated under field conditions to detect possible impacts on the above ground insects and spiders. The study compared transgenic rice and two non-GM reference rices, Ilmi and Dongjin, at Gunwi in Southern Korea in 2016. Each rice was grown on three $18m^2$ plots with a randomized block design. A total of 4,243 individuals from 43 families and 9 orders were collected from the LMO isolation field. In the three types of rice fields, a total of 1,467 individuals from the insect-resistant genetically modified rice (Bt-9), 1,423 individuals from the Ilmi, and 1,353 individuals from the Dongjin were collected, respectively. There was no difference between the population densities of the non-target insect pests, natural enemies and other insects on the insect-resistant genetically modified rice (Bt-9) and non-GM rices. These results provide the diversity and population density of non-target insects for an environment risk assessment survey on insect-resistant genetically modified rice and could be used as a guideline to make a biosafety assessment method for genetically modified crops.

Microbial Communities in Rice Paddy Soils Following Cultivation of Genetically Modified Leaf Folder-resistant Rice Plants (혹명나방 저항성벼 재배 논토양의 미생물상)

  • Kwon, Jang-Sik;Noh, Hyung-Jun;Suh, Jang-Sun;Shin, Kong-Sik;Kweon, Soon-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • The study was performed to investigate the property of rhizosphere microorganisms, and community structure during GMO, and Non-GMO rice cultivation. In the dilution plate technique, there were no significant differences in microbial populations of rhizosplane with genetically modified, and non-genetically modified rice cultivation, and rhizosphere were also the same results. Dominant bacterial genera were Afipia 12.5%, Spingomonas 10.0%, Ramlibacter 10.0%, Mycobacterium 7.5%, and Tetrasphaera 7.5% in rhizosphere soil of genetically modified rice plant, while Afipia 7.3%, Spingomonas 12.2%, Ramlibacter 7.3%, Mycobacterium 17.1%, Tetrasphaera 14.6% in non-genetically modified cultivated at Suwon test fields in 2006. Majorgenera isolated from root surface cultivated in Yesan fields were Arthrobacter 12.7% in rhizoplane of genetically modified plant, and Burkholderia 22.2% of non-genetically modified plant in 2007, Paucimonas 26.6% of genetically modified plant, Chryseobacterium 15.4% of non-genetically modified plant in 2008. Also the microbial communities in rhizosphere soils of genetically modified, and non-genetically modified plants were characterized using phospholipid fatty acid, and denaturing gradient gel electrophoresis. The phospholipid fatty acid profiles of soils in this condition showed different pattern, but did not show significant differences between soils cultivated with genetically or non-genetically modified rice plants.

Effect of Dietary Genetically Modified ${\beta}$-Carotene Biofortified Rice on Immune in Rats

  • Park, Soo-Jin;Jeong, Mi-Hye;Park, Kyung-Hun;Park, Jae-Eup
    • Reproductive and Developmental Biology
    • /
    • v.36 no.2
    • /
    • pp.133-139
    • /
    • 2012
  • This study aims to examine the effect of Genetically Modified ${\beta}$-Carotene Biofortified Rice rice developed by simultaneous expression technology in NAAS on biological immunity. Accordingly, this study added Genetically Modified ${\beta}$-Carotene Biofortified Rice 25, 50% and general rice 50% as control group into diet and provided rats with the prescribed feeds and then measured the contents of immunoglobulin and cytokine in blood. As a result, male and female IgM, IgE, male IgG1, female IgG2a and TNF-a, IL5 and IL12 showed no significant difference; male IgG2a tended to decrease dependently on the combined concentration of Genetically Modified ${\beta}$-Carotene Biofortified Rice; female IgG1 showed significance with control group, but its association with diet was not found. The higher the dietary mixing ratio, the more the male and female IFN-a and female IL-4 contents, regardless of rice variety, and it was found that female IL6 content decreased significantly, but its association with diet was not found. The risk of beta carotene-enriched rice into environment and human body has not been reported yet. The digestion of Genetically Modified ${\beta}$-Carotene Biofortified Rice can be seen as "safe" as this test result showed no big difference between general rice and Genetically Modified ${\beta}$-Carotene Biofortified Rice, and its usability is full of suggestions.

Research on the Allergic Potential of Insecticidal CrylAc Proteins of Genetically Modified Rice

  • Son, Dae-Yeul
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.385-391
    • /
    • 2006
  • In Korea, different kinds of genetically modified (GM) crops are under development, including GM-rice expressing insecticidal crystal (Cry) proteins of Bacillus thuringiensis (Bt) modified to change a single amino acid. In this study, amino acid (aa) sequences of modified Cry proteins were compared to that of known allergens, and Cry proteins expressed in GM-rice were identified by using Cry protein specific polyclonal antibody. The antigen-antibody reactions were compared between GM and commercial rice to assess the allergic risk of Cry proteins. This analysis showed no known allergen to have more than 35% aa sequence homology with modified Cry proteins in Bt rice over an 80 aa window or to have more than 8 consecutive identical aa. Sera from allergic patients showed some IgE reactivity via immunoblotting and enzyme-linked immunosorbent assay (ELISA), although no differences were seen between GM and commercial rice. Based on these results we conclude that GM rice with modified Cry proteins has no differences in its protein composition or allergenicity relative to commercial rice.

Effects of Disease Resistant Genetically Modified Rice on Soil Microbial Community Structure According to Growth Stage

  • Sohn, Soo-In;Oh, Young-Ju;Ahn, Jae-Hyung;Kang, Hyeon-jung;Cho, Woo-Suk;Cho, Yoonsung;Lee, Bum Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.185-196
    • /
    • 2019
  • BACKGROUND: This study investigated the effects of rice genetically modified to be resistant against rice blast and rice bacterial blight on the soil microbial community. A comparative analysis of the effects of rice genetically modified rice choline kinase (OsCK1) gene for disease resistance (GM rice) and the Nakdong parental cultivar (non-GM rice) on the soil microbial community at each stage was conducted using rhizosphere soil of the OsCK1 and Nakdong rice. METHODS AND RESULTS: The soil chemistry at each growth stage and the bacterial and fungal population densities were analyzed. Soil DNA was extracted from the samples, and the microbial community structures of the two soils were analyzed by pyrosequencing. No significant differences were observed in the soil chemistry and microbial population density between the two soils. The taxonomic analysis showed that Chloroflexi, Proteobacteria, Firmicutes, Actinobacteria, and Acidobacteria were present in all soils as the major phyla. Although the source tracking analysis per phylogenetic rank revealed that there were differences in the bacteria between the GM and non-GM soil as well as among the cultivation stages, the GM and non-GM soil were grouped according to the growth stages in the UPGMA dendrogram analysis. CONCLUSION: The difference in bacterial distributions between Nakdong and OsCK1 rice soils at each phylogenetic level detected in microbial community analysis by pyrosequencing may be due to the genetic modification done on GM rice or due to heterogeneity of the soil environment. In order to clarify this, it is necessary to analyze changes in root exudates along with the expression of transgene. A more detailed study involving additional multilateral soil analyses is required.

Karyotype Analyses of a Rice Cultivar 'Nakdong' and its Four Genetically Modified Events by Conventional Staining and Fluorescence in situ Hybridization

  • Jeon, Eun Jin;Ryu, Kwang Bok;Kim, Hyun Hee
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.252-259
    • /
    • 2011
  • Conventional staining and fluorescence in situ hybridization (FISH) karyotypes of the non-genetically modified (GM) parental rice line, 'Nakdong' (Oryza sativa L. japonica), and its four GM rice lines, LS28 (event LS30-32-20-1), Cry1Ac1 (event C7-1-9-1), and LS28 ${\times}$ Cry1Ac1 (events L/C1-1-3-1 and L/C1-3-1-1) were analyzed using 5S and 45S rDNAs as probes. Both parental and transgenic lines were diploids (2n=24) with one satellite chromosome pair. The lengths of the prometaphase chromosomes ranged from 1.50 to $6.30{\mu}m$. Four submetacentric and eight metacentric pairs comprised the karyotype of 'Nakdong' and its four GM lines. One pair of 5S rDNA signals was detected near the centromeric region of chromosome g in both the parental and transgenic lines. The 45S rDNA signals were detected on the secondary constrictions of the satellite chromosome pair in both the parental and transgenic lines. There was no significant difference in chromosome size, length, and composition between 'Nakdong' and its four GM lines. This research was conducted as a preliminary study for chromosomal detection of transgenes in GM rice lines and would be useful for their breeding programs.

Comparison of Expression Pattern of Housekeeping Genes in Mice fed Genetically Modified Rice (유전자 이입에 따른 GM쌀 섭취 마우스의 Housekeeping Gene 발현 패턴 비교)

  • Lee, Dong-Yeob;Heo, Jin-Chul;Lee, Kyu-Hyun;Kim, Dong-Ho;U, Sang-Uk;Cho, Hyun-Suk;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.688-694
    • /
    • 2007
  • To evaluate the human risk of long-term intake of genetically modified (GM) rice, we carried out RT-PCR of housekeeping genes. Housekeeping genes, which show highly uniform expression in living organisms during various stages of development and under different environmental conditions, were normalized by RT-PCR. We assessed the expression of 10 common housekeeping genes (18s rRNA, 25S rRNA, UBC, UBQ5, UBQ10, ACT11, GAPDH, eEF-$1{\alpha}$, ${\beta}$-TUB, GAPDH, ${\beta}$-actin, B2m, G6pd2, Gyk, Gus, Hprt, Cyclophlin A, Tfrc, ${\alpha}$-tubulin and RPL13A) in the liver, stomach, small intestine, large intestine, kidney and spleen of mice fed GM or non-GM rice. We found no significant differences in the expression of housekeeping genes between the two groups of mice.

Efficiency to Discovery Transgenic Loci in GM Rice Using Next Generation Sequencing Whole Genome Re-sequencing

  • Park, Doori;Kim, Dongin;Jang, Green;Lim, Jongsung;Shin, Yun-Ji;Kim, Jina;Seo, Mi-Seong;Park, Su-Hyun;Kim, Ju-Kon;Kwon, Tae-Ho;Choi, Ik-Young
    • Genomics & Informatics
    • /
    • v.13 no.3
    • /
    • pp.81-85
    • /
    • 2015
  • Molecular characterization technology in genetically modified organisms, in addition to how transgenic biotechnologies are developed now require full transparency to assess the risk to living modified and non-modified organisms. Next generation sequencing (NGS) methodology is suggested as an effective means in genome characterization and detection of transgenic insertion locations. In the present study, we applied NGS to insert transgenic loci, specifically the epidermal growth factor (EGF) in genetically modified rice cells. A total of 29.3 Gb (${\sim}72{\times}coverage$) was sequenced with a $2{\times}150bp$ paired end method by Illumina HiSeq2500, which was consecutively mapped to the rice genome and T-vector sequence. The compatible pairs of reads were successfully mapped to 10 loci on the rice chromosome and vector sequences were validated to the insertion location by polymerase chain reaction (PCR) amplification. The EGF transgenic site was confirmed only on chromosome 4 by PCR. Results of this study demonstrated the success of NGS data to characterize the rice genome. Bioinformatics analyses must be developed in association with NGS data to identify highly accurate transgenic sites.

Arthropod Diversity and Community Structure in Fields of Non-genetically Modified (GM) and Herbicide-tolerant GM Rice (PPO 저해 제초제 내성 유전자변형 벼가 절지동물군집에 미치는 영향)

  • Kim, Young-Joong;Lee, Joon-Ho;Back, Kyoungwhan;Kim, Chang-Gi
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.335-343
    • /
    • 2015
  • One of the primary concerns about the environmental risks of genetically modified (GM) crops is that they may have adverse effects on the local arthropod communities. In this study, we investigated whether the arthropod diversity and community structure in fields of GM rice tolerant to protoporphyrinogen oxidase (PPO)-inhibiting herbicides differ from those in non-GM (control) rice fields. The aim of this study was to assess the potential adverse effects of GM rice on the local arthropod communities. During the growing seasons in the study period, we collected arthropods from both fields by using yellow sticky traps and compared the diversity and community structure of arthropods from the two sites. Overall, the GM rice had no significant effect on the diversity of the local arthropod communities. In addition, multivariate analyses (permutational multivariate analysis of variance and nonmetric multidimensional scaling) showed that the structures of arthropod communities were not affected by the rice genotype (GM vs. non-GM), although these comparisons were made using data obtained at different sampling dates.

Safety assessment of the AtCYP78A7 protein expressed in genetically modified rice tolerant to abiotic stress

  • Nam, Kyong-Hee;Kim, Do Young;Shin, Hee Jae;Pack, In-Soon;Park, Jung-Ho;Yoon, Won Kee;Kim, Ho Bang;Kim, Chang-Gi
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.248-257
    • /
    • 2018
  • Overexpression of AtCYP78A7, a gene encoding a cytochrome P450 protein, has been reported to improve tolerance to drought stress in genetically modified (GM) rice (Oryza sativa L.). The aim of this study was to evaluate the potential allergenicity and acute oral toxicity of the AtCYP78A7 protein expressed in GM rice. Bioinformatics analysis of the amino acid sequence of AtCYP78A7 did not identify any similarities with any known allergens or toxins. It showed that no known allergen had more than a 35% amino acid sequence homology with the AtCYP78A7 protein over an 80 amino acid window or more than 8 consecutive identical amino acids. The gene encoding the AtCYP78A7 protein was cloned in the pGEX-4T-1 vector and expressed in E. coli. Then, the AtCYP78A7 protein was purified and analyzed for acute oral toxicity. The AtCYP78A7 protein was fed at a dose of 2,000 mg/kg body weight in mice, and the changes in mortalities, clinical findings, and body weight were monitored for 14 days after the dosing. Necropsy was carried out on day 14. The protein did not cause any adverse effects when it was orally administered to mice at 2000 mg/kg body weight. These results indicate that the AtCYP78A7 protein expressed in GM rice would not be a potential allergen or toxin.