• Title/Summary/Keyword: Genomic DNA sequence

Search Result 594, Processing Time 0.034 seconds

Extension of a 5'- or 3'-end Genomic DNA Sequence by a Single PCR Amplification

  • Jeon, Taeck J.
    • Journal of Integrative Natural Science
    • /
    • v.1 no.3
    • /
    • pp.230-233
    • /
    • 2008
  • A simple and rapid method is described for extending the 5'- or 3'-end genomic sequence of a known partial sequence by only a single round of PCR. This method involves digesting and ligating genomic and plasmid DNAs, and amplifying the 5'-upstream or 3'-end downstream sequence of the known DNA sequence, using two primers, one gene specific and the other plasmid specific. A single round of PCR amplification is sufficient to produce gene-specific bands detectable in gels. By using this approach, 5'-end genomic sequence of the D-amoeba sams gene was extended.

  • PDF

Cloning of the 5'-end and Amplification of Full-Length cDNA of Genomic RNA of Lily symptomless virus

  • Park, Seon-Ah;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.18 no.4
    • /
    • pp.187-191
    • /
    • 2002
  • This paper describes the cloning and sequence analysis of the 5'-terminal region and full-length cDNA production of genomic RNA of Lily symptomless virus (LSV), a Species Of the genus Carlavirus. A sing1e DNA band about 600 bp harboring the 5'-end of genomic RNA of the virus was successfully amplified by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE), and was cloned for nucleotide sequence determination. Sequence analysis of selected RACE cDNA clones revealed that the LSV 5'non-translated region consists of 67 nucleotides long of AT rich stretch followed GC rich from the 5'-end. To produce full-length cDNA products for the viral genomic RNA, a set of LSV-specific primers could be designed based on the obtained sequence in this study and the known sequences of 3'-terminal region for the virus. Full-length cDNA copies of LSV, an 8.4 kb long, were directly amplified by the long-template RT-PCR technique from the purified viral genomic RNA samples. This full-length cDNA copies were analyzed by restriction mapping. The molecules produced in this study can be useful for the production of in vitro infectious cDNA clone, as well as, for the completion of genomic RNA sequence and genome structure for the virus.

Characterization of the Nucleotide Sequence of a Polyubiquitin Gene (PUBC1) from Arabian Camel, Camelus dromedarius

  • Al-Khedhairy, Abdulaziz Ali A.
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.144-147
    • /
    • 2004
  • Molecular amplification and sequencing of genomic DNA that encodes camel polyubiquitin (PUBC1) was performed by a polymerase chain reaction (PCR) using various sets of primers. The amplification generated a number of DNA fragments, which were sequenced and compared with the polyubiquitin coding sequences of various species. One DNA fragment that conformed to 325 bp was found to be 95 and 88% homologous to the sequences of human polyubiquitin B and C, respectively. The DNA translated into 108 amino acids that corresponded to two fused units of ubiquitin with no intervening sequence, which indicates that it is a polyubiquitin and contains at least two units of ubiquitin. Although, variations were found in the nucleotide sequence when compared to those of other species, the amino acid sequence was 100% homologous to the polyubiquitin sequences of humans, mice, and rats. This is the first report of the polyubiquitin DNA coding sequence and its corresponding amino acid sequence from camels, amplified using direct genomic DNA preparations.

Cloning and Characterization of a Novel Laccase Gene, fvlac7, Based on the Genomic Sequence of Flammulina velutipes

  • Kim, Jong-Kun;Lim, Seon-Hwa;Kang, Hee-Wan
    • Mycobiology
    • /
    • v.41 no.1
    • /
    • pp.37-41
    • /
    • 2013
  • Laccases (EC 1.10.3.2) are copper-containing polyphenol oxidases found in white-rot fungi. Here, we report the cloning and analysis of the nucleotide sequence of a new laccase gene, fvlac7, based on the genomic sequence of Flammulina velutipes. A primer set was designed from the putative mRNA that was aligned to the genomic DNA of F. velutipes. A cDNA fragment approximately 1.6-kb long was then amplified by reverse transcriptase-PCR using total RNA, which was subsequently cloned and sequenced. The cDNA sequence of fvlac7 was then compared to that of the genomic DNA, and 16 introns were found in the genomic DNA sequence. The fvlac7 protein, which consists of 538 amino acids, showed only 42~51% identity with 12 different mushroom species containing two laccases of F. velutipes, suggesting the fvlac7 is a novel laccase gene. The first 25 amino acids of Fvlac7 correspond to a predicted signal sequence, four copper-binding sites, and four N-glycosylation sites. Fvlac7 cDNA was heterologously overexpressed in an Escherichia coli system with an approximate expected molecular weight of 60 kDa.

Development of Restriction Fragment Length Polymorphism(RELP) Markers in Silkworm, Bombyx mori (누에 RFLP(제한단편 다형현상)마커 개발)

  • 고승주;김태산;이영승;황재삼;이상몽
    • Korean journal of applied entomology
    • /
    • v.36 no.1
    • /
    • pp.96-104
    • /
    • 1997
  • A silkworm Bombyx mori genomic DNA library was constructed from polyphagous J111 strain and unpolyphagous $C_3$ strain to develop the genomic study by DNA makers. Genomic DNAs of two strains were digested with restriction enzyme EcoRI and ligated into pUC18. The ligated plasmids were transferred into E. coli host strain DH5$\alpha$. When the genomic DNAs were hybridized with insert DNAs from transformant, could be categorized from hybridization patterns to three groups as high repetitive sequence, moderately repetitive sequence, and low-copy number sequences. A total of 219 clones containing single or low-copy number sequence inserts were examined for any polymorphisms between two strains of J111 and $C_3$. Forty six clones showed RFLPs and 10 of these clones were used as a probe of analysis of $F_2$ population derived from crossing between J111 and $C_3$ strain. The genetic inheritance tested with each clones will be important tools to construct the genetic map of the silkworm, Bombyx mori.

  • PDF

Genomic Organization of ancop Gene for ${\alpha}-COP$ Homolog from Aspergillus nidulans

  • Lee, Hwan-Hee;Chae, Shun-Kee;Kim, Jeong-Yoon;Maeng, Pil-Jae;Park, Hee-Moon
    • Mycobiology
    • /
    • v.28 no.4
    • /
    • pp.171-176
    • /
    • 2000
  • We have cloned a ${\alpha}-COP$ homolog, ancop, from Aspergillus nidulans by colony hybridization of chromosome specific library using ${\alpha}-COP$ homologous fragment as a probe. The probe DNA was amplified with degenerated primers designed by comparison of conserved region of the amino acid sequences of Saccharomyces cerevisiae ${\alpha}-COP$, Homo sapiens HEP-COP, and Drosophila melanogaster ${\alpha}-COP$. Full length cDNA clone was also amplified by RT-PCR. Comparison of genomic DNA sequence with cDNA sequence obtained by RT-PCR revealed 7 introns. Amino acid sequence similarity search of the anCop with other ${\alpha}-COPs$ gave an overall identity of 52% with S. cerevisiae, 47% with human and bovine, 45% with Drosophila and Arabidopsis. In upstream region from the transcription start site, a putative TATA and CAAT motif were also identified.

  • PDF

SEQUENCE ANALYSIS AND COMPARISON OF BOVINE αS1-CASEIN GENOMIC DNA

  • Lin, C.S.;Huang, M.C.;Choo, K.B.;Tseng, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.4
    • /
    • pp.541-547
    • /
    • 1993
  • A phage clone containing the partial ${\alpha}_{S1}$-casein gene was isolated from a bovine genomic library by using mixed probes of ovine ${\alpha}_{S1}$-, ${\beta}$- and ${\kappa}$-casein cDNAs. Restriction enzyme mapping analysis for 14.6 kb revealed that the map was in conflict with the report of Meade et al. (1990), especially in the 3'-end fragment. Sequence analysis of 12.6 kb revealed a high AT/GC ratio (1.64); we have identified eight exon sequences according to the bovine ${\alpha}_{S1}$-casein cDNA sequence. The same exon/intron splice junction sequence was observed between these exons. We suggest that the bovine ${\alpha}_{S1}$-casein gene night contain a minimum of 18 exons and the full length is approximately 18-19 kb.

The Specific Probes Confirming the Genomic DNA of Tricholoma matsutake in Korea (송이의 Genomic DNA에 특이적인 Probe)

  • Lee, Sang-Sun;Hong, Sung-Woon;Chung, Hung-Chae;Sung, Chang-Kun;Kim, Jae-Hun;Ka, Kang-Hyeon;Kim, Hyun-Joong
    • The Korean Journal of Mycology
    • /
    • v.27 no.1 s.88
    • /
    • pp.20-26
    • /
    • 1999
  • The specific DNA band appeared in PCR-RAPD analysis using OPO-2 primer was a very important for the researching Korean pine-mushrooms, Tricholoma matsutake. This DNA band, sequenced to be the 770 base pairs, existed as only a single copy in the whole genomic DNA's of Korean pine-mushrooms. However, this band was not presenting from the PCR-RAPD bands of other ectomycorrhyzal fungi reacted with the OPO-2 primer or the dot blots. Also, this DNA sequence was not matched with those of the other genes known by NCBI and had low homology together with sequence of other proteins compared. Those results suggested that the specific DNA band can be used as probe for identification of T. matsutake and might be related to the informations rather than the gene for the proteins with analysis of protein sequence translated from the DNA sequence.

  • PDF

Genotypic and Phenotypic Diversity of PGPR Fluorescent Pseudomonads Isolated from the Rhizosphere of Sugarcane (Saccharum officinarum L.)

  • Rameshkumar, Neelamegam;Ayyadurai, Niraikulam;Kayalvizhi, Nagarajan;Gunasekaran, Paramsamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.13-24
    • /
    • 2012
  • The genetic diversity of plant growth-promoting rhizobacterial (PGPR) fluorescent pseudomonads associated with the sugarcane (Saccharum officinarum L.) rhizosphere was analyzed. Selected isolates were screened for plant growthpromoting properties including production of indole acetic acid, phosphate solubilization, denitrification ability, and production of antifungal metabolites. Furthermore, 16S rDNA sequence analysis was performed to identify and differentiate these isolates. Based on 16S rDNA sequence similarity, the isolates were designated as Pseudomonas plecoglossicida, P. fluorescens, P. libaniensis, and P. aeruginosa. Differentiation of isolates belonging to the same group was achieved through different genomic DNA fingerprinting techniques, including randomly amplified polymorphic DNA (RAPD), amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic (REP), enterobacterial repetitive intergenic consensus (ERIC), and bacterial repetitive BOX elements (BOX) analyses. The genetic diversity observed among the isolates and rep-PCR-generated fingerprinting patterns revealed that PGPR fluorescent pseudomonads are associated with the rhizosphere of sugarcane and that P. plecoglossicida is a dominant species. The knowledge obtained herein regarding the genetic and functional diversity of fluorescent pseudomonads associated with the sugarcane rhizosphere is useful for understanding their ecological role and potential utilization in sustainable agriculture.

Genome Architecture and Its Roles in Human Copy Number Variation

  • Chen, Lu;Zhou, Weichen;Zhang, Ling;Zhang, Feng
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.136-144
    • /
    • 2014
  • Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs), are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.