• Title/Summary/Keyword: Geobag

Search Result 9, Processing Time 0.035 seconds

Behaviour of Geobag Well System Using Recycled Waste Concrete (폐콘크리트를 이용한 지오백 옹벽의 거동특성 평가)

  • Kim Jin-Man;Lee Dae-Young;Joo Tae-Sung;Lee June-Keun;Paik Young-Shik;Han Sang-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.39-45
    • /
    • 2006
  • A field instrumentation for a recycled waste concrete geobag wall was performed to investigate the performance of the geobag wall, and uniaxial compression tests for a recycled waste concrete geobag were executed in laboratory. The strength of a recycled waste concrete geobag, the lateral earth pressure of a geobag wall, the horizontal deflection of a geobag wall, and the deformation of a backfill in geobag wall are mainly evaluated in this study. Based on the results of analysis on the measurements, it was found that the geobag wall displacement was within the recommendation for mechanically stabilized earth walls. It was also found that the use of a recycled waste concrete in geobag wall provides economical benefit, construction easiness, and good performance.

Behavior of Full Scaled Geobag Retaining Wall Structure by Field Pilot Test (현장실험을 통한 식생토낭 보강토벽의 거동특성에 관한 연구)

  • Shin, Eun-Chul;Park, Kyung-Won;Shin, Hui-su;Ham, Kyung-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.21-31
    • /
    • 2017
  • Geobag method is an eco-friendly method to minimize the impact on the environment in the construction of retaining wall structure as a kind of geosynthetic reinforced retaining walls. In this study, evaluated behavior of full scaled geobag retaining wall about four different types of geobag retaining walls, that is, non-compacted geobags wall, compacted geobag wall, combination of longitudinal and transversal laied geobags wall, gabion and geobag wall were constructed in the field with instrumentation. Based on the results of field measurement, transversal layered geobag wall for non-compacted case was displaced 30% more than that of mixed gabion wall. Also, the more than 2m geobag walls without reinforcement at the backfill area are turned out to be unstable in terms of wall displacement. On the one hand, the distribution of the earth pressure for all geobag retaining walls sites show within the range of Rankine's and Coulomb's earth pressure after construction. But after intensity rainfall, the transversal laied geobag walls significantly increment of soil pressure. The geobag walls which constructed in the way of mixed wall systems such as gabion and geobag, longitudinal and transversal laied geobags are much stable with comparison of transversal laied geobag wall.

Field Evaluation of Scour Countermeasure Using Geobag (지오백 세굴보호공법의 현장 적용성 평가)

  • Park, Jae-Hyun;Kwak, Ki-Seok;Lee, Ju-Hyung;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1251-1258
    • /
    • 2006
  • Field evaluation of new scour countermeasure using geobag and aggregate is performed to prepare for the basis of design and construction standard in Korea. Polyester non-woven geotextile is determined as a geobag material and tire cord is used to sew up the geobag which contain aggregate. Hwasang-gyo(bridge) is selected as a pilot test site through office review and field investigation. According to the design flood of Hwasang-gyo(bridge), the size and volume of geobag are calculated and construction area and required number of geobags are computed by considering the specification of the pier and foundation of the bridge. After construction, scour depth around geobag construction area is measured and the stability of geobag is ascertained by using pole and digital camera.

  • PDF

A Basic Study on the Geobag System for Urgent Restoration of the Collapsed Roadbed (강우로 유실된 철도노반 긴급복구를 위한 지오백시스템 개발 기초연구)

  • 조삼덕;황선근;이대영;이광우
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.255-265
    • /
    • 2003
  • A series of laboratory tests were performed to evaluate engineering properties of geobag system which is used for urgent restoration of the collapsed roadbed. In this study, the suitable geobag size was proposed as 44cm wide and 66cm long, and the suitable filling ratio of geobag was also proposed as 80% through the static loading tests. Also a series of model tests were carried out to investigate the characteristics of the engineering behavior and the distribution of earth pressure of the geobag roadbed under static and dynamic loading.

Evaluation of Engineering Properties of Geobags Roadbed by Model Test (축소모형실험에 의한 지오백 축조노반의 공학적 특성 평가)

  • 조삼덕;이대영;이광우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.635-642
    • /
    • 2002
  • A series of the experimental study were peformed to evaluate engineering properties of geobag which is used to the urgent restoration of the failed roadbed. In this study, the suitable geobag size was proposed to the 44cm wide by 66cm long and the suitable filling ratio of geobag was proposed to the 80% based on the loading test. Also a series of the model test were carried out to investigate the characteristics of strain behavior and the distribution of earth pressure of the geobags roadbed.

  • PDF

Evaluation on stability of scour countermeasures using geobag and recycled aggregates (재생골재를 활용한 지오백 세굴보호공법의 안정성 평가)

  • Lee, Ju-Hyung;Park, Jae-Hyun;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.233-244
    • /
    • 2009
  • A new bridge scour countermeasure using geobags and recycled aggregates which is more stable and economical than existing methods is proposed, and its stability was verified through material tests. PP short staple nonwoven geotextile and PET long staple nonwoven geotextile produced in Korea were selected, and a series of strength tests and a test of hydraulic characteristics were conducted to determine a suitable geotextile for geobags. A series of leaching test was also conducted to assess the potential environmental risk of recycled concrete produced in Korea when it is utilized as a material for protecting bridge piers against scour.

  • PDF

Application and Evaluation of Geotextile Container Method (지오텍스타일 콘테이너 공법의 현장적용 및 평가)

  • 조삼덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.19-31
    • /
    • 2000
  • Geotextile container method is an environment-friendly construction method that is utilized to build up a breakwater and an underwater embankment, etc. using geotextile container, which is producted by filling the geotextile bag with sand or dredged materials. Geotextile containers are divided into geobags, geotubes and geocontainers based on their size and production method. In recent years, the number of application for the geotextile container method is rapidly increasing in the world, and the development of the effective construction method is focused. In this study, the application and the achievement of the geotextile container method will be introduced, and the practical construction examples and the trend of technology development in foreign country will be discussed.

  • PDF

A Study on the Sedimentation of Dredged Soils and Shape Changes of a Transparent Vinyl Tube by Filling Tests - Anti-Crater Formation - (준설토 주입방법에 의한 비닐튜브체의 퇴적 및 변형 특성 - 크레이터 방지 기술을 중심으로 -)

  • Kim, Hyeong-Joo;Sung, Hyun-Jong;Lee, Kwang-Hyung;Lee, Jang-Baek
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.1-10
    • /
    • 2014
  • In this study, two different types of dredged fill injection methods are introduced and filling experiments were conducted to analyze the impact of each technique to the distribution and deposition of dredged soil fill and how it influence the final tube shape. Two transparent plastic tubes were fabricated to observe the deposition behavior of the deposited fill material. Both tubes measured 4.0 meters in length (L) and has vinyl tube diameters (D) of 0.5m and 0.7m. T-type and I-type inlet system are also introduced in this paper. The influence of this inlet systems to the distribution and deposition behavior of dredged soil fill inside the vinyl tubes were observed during the experiment. After the sedimentation of the slurry mixture, the water on top of the soil sediments are removed and the slurry mixture was re-injected into the vinyl tube, this process was carried out repeatedly. The shape changes of the vinyl tube, e.g. the changes in both tube height and width, are constantly monitored after each slurry injection and water draining phases. Crater formation was observed in the case of I-Type inlet system and a non-uniform sediment distribution occurred. For the diffusion deposit of soil particles to long distance are minimal shape technique using the T-Type inlet system. Therefore the undrain filling height ratio ($H/D_0$) was found to be around 0.54 to 0.64 and the horizontal strain ratio ($W/D_0$) ranges from 1.45 to 1.54. The filling soil height is proportional to dredged-material filling phases, but, horizontal strain ratio is constant or inversely reduced so that the center of tube body is raised in the upward direction.