• 제목/요약/키워드: Geometric Method

검색결과 2,977건 처리시간 0.029초

Geometric Image Compensation Method for a Portable Projector Based on Prewarping Using 2D Homography

  • Cho, Jinsoo;Won, Jongkil;Bae, Jongwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권9호
    • /
    • pp.2299-2311
    • /
    • 2013
  • As portable multimedia devices become more popular and smaller, the use of portable projectors is also rapidly increasing. However, when portable projectors are used in mobile environments in which a dedicated planar screen is not available, the problem of geometric distortion of the projected image often arises. In this paper, we present a geometric image compensation method for portable projectors to compensate for geometric distortions of images projected on various types of planar or nonplanar projection surfaces. The proposed method is based on extraction of the two-dimensional (2D) geometric information of a projection area, setting of the compensation area, and prewarping using 2D homography. The experimental results show that the proposed method allows effective compensation for waved and arbitrarily shaped projection areas, as well as tilted and bent surfaces that are often found in the mobile environment. Furthermore, the proposed method is more computationally efficient than conventional image compensation methods that use 3D geometric information.

Geometrical Compensation of Injection-Molded Thin-Walled Parts in Reverse Engineering

  • Kim Yeun Sul;Lee Hi Koan;Huang Jing Chung;Kong Young Sik;Yang Gyun Eui
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.12-18
    • /
    • 2005
  • A geometric compensation of thin-walled molded parts in reverse engineering is presented. Researches in reverse engineering have focused on the fitting of points to curves and surfaces. However, the reconstructed model is not the geometric model because the molded parts have some dimensional errors in measurements and deformation during molding. Geometric information can give an improved accuracy in reverse engineering. Thus, measurement data must be compensated with geometric information to reconstruct the mathematical model. The functional and geometric concepts of the part can be derived from geometric information. LSM (Least square method) is adopted to determine the geometric information. Also, an example of geometric compensation is given to improve the accuracy of geometric model and to inspect the reconstructed model.

A Geometric Constraint Solver for Parametric Modeling

  • Jae Yeol Lee;Kwangsoo Kim
    • 한국CDE학회논문집
    • /
    • 제3권4호
    • /
    • pp.211-222
    • /
    • 1998
  • Parametric design is an important modeling paradigm in CAD/CAM applications, enabling efficient design modifications and variations. One of the major issues in parametric design is to develop a geometric constraint solver that can handle a large set of geometric configurations efficiently and robustly. In this appear, we propose a new approach to geometric constraint solving that employs a graph-based method to solve the ruler-and-compass constructible configurations and a numerical method to solve the ruler-and-compass non-constructible configurations, in a way that combines the advantages of both methods. The geometric constraint solving process consists of two phases: 1) planning phase and 2) execution phase. In the planning phase, a sequence of construction steps is generated by clustering the constrained geometric entities and reducing the constraint graph in sequence. in the execution phase, each construction step is evaluated to determine the geometric entities, using both approaches. By combining the advantages of the graph-based constructive approach with the universality of the numerical approach, the proposed approach can maximize the efficiency, robustness, and extensibility of geometric constraint solver.

  • PDF

두 기하학적 비선형 효과들을 고려한 대변위 강체운동을 하는 보의 동적 모델링 방법 (Dynamic Modeling Method for Beams Undergoing Overall Rigid Body Motion Considering Two Geometric Non-linear Effects)

  • 김나은;유홍희
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.1014-1019
    • /
    • 2003
  • A dynamic modeling method for beams undergoing overall rigid body motion is presented in this paper. Two special deformation variables are introduced to represent the stretching and the curvature and are approximated by the assumed mode method. Geometric constraint equations that relate the two special deformation variables and the cartesian deformation variables are incorporated into the modeling method. By using the special deformation variables, all natural as well as geometric boundary conditions can be satisfied. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response when overall rigid body motion is involved.

MODIFIED GEOMETRIC PROGRAMMING PROBLEM AND ITS APPLICATIONS

  • ISLAM SAHIDUL;KUMAR ROY TAPAN
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.121-144
    • /
    • 2005
  • In this paper, we propose unconstrained and constrained posynomial Geometric Programming (GP) problem with negative or positive integral degree of difficulty. Conventional GP approach has been modified to solve some special type of GP problems. In specific case, when the degree of difficulty is negative, the normality and the orthogonality conditions of the dual program give a system of linear equations. No general solution vector exists for this system of linear equations. But an approximate solution can be determined by the least square and also max-min method. Here, modified form of geometric programming method has been demonstrated and for that purpose necessary theorems have been derived. Finally, these are illustrated by numerical examples and applications.

A Selection Method of Residual Errors for GMS Geometric Correction Using Ground Control Points

  • Yasukawa, Masaki;Takagi, Mikio;Yasuoka, Yoshifumi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1168-1170
    • /
    • 2003
  • The GMS geometric correction method with highspeed and high accuracy is needed. In this paper, a selection method of residual errors for the GMS geometric correction using GCPs (ground control points) is described. Namely, it is a technique for limiting the number of residual error acquisition using GCPs in each block to reduce the processing time. As the result, since the processing time was about 7.0 minutes on conventional geometric correction and about 5.6 minutes on the proposed method, it was shown that the processing time of about 1.4 minutes was shortened.

  • PDF

인터넷 지리정보시스템에서 단계화 된 지리정보의 효율적인 데이터 검색을 위한 공간 인덱싱 기법 (Spatial Indexing Method for Efficient Retrieval of Levelized Geometric Data in Internet-GIS)

  • 권준희;윤용익
    • 인터넷정보학회논문지
    • /
    • 제3권2호
    • /
    • pp.1-13
    • /
    • 2002
  • 최근 인터넷 지리정보시스템에 대한 요구가 증가하면서 효율적인 공간 데이터 검색에 대한 필요성이 커지고 있다. 효율적인 공간 데이터 검색을 위해서는 단계별로 상세 화된 데이터를 검색하는 기법이 요구되며, 이러한 데이터를 효율적으로 처리하는 공간 인덱싱 기법이 필요하다. 본 논문에서는 효율적인 공간 데이터 검색을 위한 단계화 된 지리정보 데이터 검색을 지원하는 공간 인덱싱 기법을 제안한다. 기존의 공간 인덱싱 기법은 단계별 데이터를 검색하는데 비효율적이며, 단계별 데이터를 지원하는 몇 가지 공간 인덱싱 기법도 모든 종류의 단계별 데이터를 지원할 수 없는 문제점을 가진다. 제안된 구조는 모든 종류의 단계별 데이터를 지원하며, 메모리 용량과 검색 시간 모두에서 이전의 공간 인덱싱 기법보다 우수하다.

  • PDF

TOPOLOGICAL METHOD DOES NOT WORK FOR FRANKEL-MCDUFF CONJECTURE

  • Kim, Min Kyu
    • 충청수학회지
    • /
    • 제20권1호
    • /
    • pp.31-35
    • /
    • 2007
  • In dealing with transformation group, topological approach is very natural. But, it is not sufficient to investigate geometric properties of transformation group and we need geometric method. Frankel-McDuff Conjecture is very interesting in the point that it shows struggling between topological method and geometric method. In this paper, the author suggest generalized Frankel-McDuff conjecture as a topological version of the conjecture and construct a counterexample for the generalized version, and from this we assert that topological method does not work for Frankel-McDuff Conjecture.

  • PDF

초정밀 롤 금형 가공기의 기하학적 오차 측정 방법: 모의실험 (Measurement Method for Geometric Errors of Ultra-precision Roll Mold Machine Tool: Simulation)

  • 이광일;양승한
    • 한국정밀공학회지
    • /
    • 제30권10호
    • /
    • pp.1087-1093
    • /
    • 2013
  • In this study, a measurement method of double ball-bar is proposed to measure the geometric errors of an ultra-precision roll mold machine tool. A volumetric error model of the machine tool is established to investigate the effects of the geometric errors to a radius error and a cylindricity of the roll mold. A measurement path is suggested for the geometric errors, and a ball-bar equation is derived to represent the relation between the geometric errors and a measured data of the double ball-bar. Set-up errors, which are inevitable at the double ball-bar installation, also are analyzed and are removed mathematically for the measurement accuracy. In addition, standard uncertainty of the measured geometric errors is analyzed to determine the experimental condition. Finally, the proposed method is tested and verified through simulation.

기하급수 전개법을 이용한 준해석 민감도의 오차 분석 (Error Estimation for the Semi-Analytic Design Sensitivity Using the Geometric Series Expansion Method)

  • 단호진;이병채
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.262-267
    • /
    • 2003
  • Error of the geometric series expansion method for the structural sensitivity analysis is estimated. Although the semi-analytic method has several advantages, accuracy of the method prevents it from practical application. One of the promising remedies is the use of geometric series formula for the matrix inversion. Its result of the sensitivity analysis converges that of the global difference method which is known as reliable one. To reduce computational efforts and to obtain reliable results, it is important to know how many terms need to expand. In this paper, the error formula is presented and Its usefulness is illustrated through numerical experiments.