• Title/Summary/Keyword: Geostationary Orbit

Search Result 257, Processing Time 0.028 seconds

Analysis of Interference Effect Between Geostationary Orbit Link and Non-Geostationary Orbit Link (정지궤도 위성망과 비정지궤도 위성망간의 간섭영향 분석)

  • Kang, Chul-Gyu;Park, Cheol-Sun;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.344-350
    • /
    • 2009
  • In this paper, interference effect given from non-geostationary orbit link into geostationary orbit link is analyzed by BER performance. To analyze the interference effect with the angle between satellites, the angular separation is changed from $1^{\circ}$ to $8^{\circ}$, and the number of the satellite is also changed from 1 to 4 for analyzing it. From the results, the interference effect into the geostationary orbit service from non-geostationary orbit link is more increased according to the angular separation that is decreased. Especially, the small angle gives more interference effects to the geostationary orbit link. Furthermore, more number of interfering satellites gives more interference effect to the geostationary orbit link. However, the angle between the interference orbit and geostationary orbit gives more effect to the system performance then the number of the interference orbit.

  • PDF

Interference Effect Analysis of Geostationary Orbit Link from Non-Geostationary Orbit Link (정지궤도 위성망과 비정지궤도 위성망간의 간섭영향 분석)

  • Kang, Chul-Gyu;Joung, Seung-Hee;Choi, Young-Seok;OH, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.919-923
    • /
    • 2009
  • In this paper, interference effect given from non-geostationary orbit link into geostationary orbit link is analyzed by BER performance curve. To analyse the interference effect with the angle between satellites, the angular separation is changed from $1^{\circ}$ to $8^{\circ}$, and the number of the satellite is also changed from 1 to 4 for analyzing it. From the result under those research environments, the interference effect into the geostationary orbit service is more increased according to the angular separation that is decreased. Especially, the small angle gives more interference effects to the geostationary orbit link. Furthermore, more number of interfering satellites gives more interference effect to the geostationary orbit link.

  • PDF

A Conceptual Study of Positioning System for the Geostationary Satellite Autonomous Operation (정지궤도 위성의 자동운용을 위한 위치결정 시스템의 개념연구)

  • Lee, Sang-Cherl;Ju, Gwang-Hyeok;Kim, Bang-Yeop;Park, Bong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.41-47
    • /
    • 2005
  • Even more than 240 commercial geostationary communication satellites currently on orbit at the higher location than the GPS orbit altitude perform their own missions only by the support of the ground segment because of weak visibility from GPS. In addition, the orbit determination accuracy is very low without using two or more dedicated ground tracking antennas in intercontinental ground segment, since the satellite hardly moves with respect to the ground station. In this paper, we propose the GSPS(Geostationary Satellite Positioning System) in circular orbits of two sidereal days period higher than the geosynchronous orbit for orbit determination and autonomous satellite operation. The GSPS is conceived as a ranging system in that unknown positions of a geostationary satellite can be acquired from the known positions of the GSPS satellites. Each GSPS satellite transmits navigation data, clock data, correction data, and geostationary satellite command to control a geostationary satellite.

Geostationary Orbit Surveillance Using the Unscented Kalman Filter and the Analytical Orbit Model

  • Roh, Kyoung-Min;Park, Eun-Seo;Choi, Byung-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.193-201
    • /
    • 2011
  • A strategy for geostationary orbit (or geostationary earth orbit [GEO]) surveillance based on optical angular observations is presented in this study. For the dynamic model, precise analytical orbit model developed by Lee et al. (1997) is used to improve computation performance and the unscented Kalman filer (UKF) is applied as a real-time filtering method. The UKF is known to perform well under highly nonlinear conditions such as surveillance in this study. The strategy that combines the analytical orbit propagation model and the UKF is tested for various conditions like different level of initial error and different level of measurement noise. The dependencies on observation interval and number of ground station are also tested. The test results shows that the GEO orbit determination based on the UKF and the analytical orbit model can be applied to GEO orbit tracking and surveillance effectively.

Geostationary Transfer Orbit Mission Analysis Software Development

  • Kim, Bang-Yeop
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.26.1-26.1
    • /
    • 2008
  • The Korean first geostationary meteorological satellite, COMS, will be launched during second half of 2009. For the next meteorological geostationary satellite mission, KARI is now preparing the development process and tools. As one of the endeavor, a software tool is being developed for the analysis and design of geostationary transfer orbit. Generally, these kind of tools should be able to do various analysis works like apogee burn planning, dispersion analysis, ground visibility analysis, and launch window analysis etc. In this presentation, a brief introduction about a design process and analysis software tool development. And simulated calculation results are provided for the geostationary transfer orbit. These software can be used for the next geostationary satellite mission design and development.

  • PDF

On-board Realtime Orbit Parameter Generator for Geostationary Satellite (정지궤도위성 탑재용 실시간 궤도요소 생성기)

  • Park, Bong-Kyu;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.61-67
    • /
    • 2009
  • This paper proposes an on-board orbit data generation algorithm for geostationary satellites. The concept of the proposed algorithm is as follows. From the ground, the position and velocity deviations with respect to the assumed reference orbit are computed for 48 hours of time duration in 30 minutes interval, and the generated data are up-loaded to the satellite to be stored. From the table, three nearest data sets are selected to compute position and velocity deviation for asked epoch time by applying $2^{nd}$ order polynomial interpolation. The computed position and velocity deviation data are added to reference orbit to recover absolute orbit information. Here, the reference orbit is selected to be ideal geostationary orbit with a zero inclination and zero eccentricity. Thanks to very low computational burden, this algorithm allows us to generate orbit data at 1Hz or even higher. In order to support 48 hours autonomy, maximum 3K byte memory is required as orbit data storage. It is estimated that this additional memory requirement is acceptable for geostationary satellite application.

  • PDF

GOES-9 위성 영상을 이용한 특정 궤도 지점에서의 지구 투영

  • Kang, Chi-Ho;Ahn, Sang-Il;Koo, In-Hoi
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.267-271
    • /
    • 2004
  • The satellite in the geostationary orbit rotates around Earth center with the same angular rate as the Earth. So, the Earth can be observed with sequential time series. GOES(Geostationary Operational Environmental Satellites)-9 is a meteorological satellite, which is now located at 155ㆁE geostationary orbit location in order to monitor East-Asia meteorological environment including Korean Peninsular. Every meteorological information is acquired from GOES-9 with the period of about 1 hour. COMS(Communication, Ocean and Meteorological Satellite) has been developed by KARI(Korea Aerospace Research Institute) since 2003 and will be launched at 2008. COMS will be located at different orbit location compared to GOES-9. In this study, a simulated COMS image which is the perspective from different geostationary orbit location is generated using an GOES-9 image.

  • PDF

Geostationary Satellite Station Keeping Robustness to Loss of Ground Control

  • Woo, Hyung Je;Buckwalter, Bjorn
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.65-82
    • /
    • 2021
  • For the vast majority of geostationary satellites currently in orbit, station keeping activities including orbit determination and maneuver planning and execution are ground-directed and dependent on the availability of ground-based satellite control personnel and facilities. However, a requirement linked to satellite autonomy and survivability in cases of interrupted ground support is often one of the stipulated provisions on the satellite platform design. It is especially important for a geostationary military-purposed satellite to remain within its designated orbital window, in order to provide reliable uninterrupted telecommunications services, in the absence of ground-based resources due to warfare or other disasters. In this paper we investigate factors affecting the robustness of a geostationary satellite's orbit in terms of the maximum duration the satellite's station keeping window can be maintained without ground intervention. By comparing simulations of orbit evolution, given different initial conditions and operations strategies, a variation of parameters study has been performed and we have analyzed which factors the duration is most sensitive to. This also provides valuable insights into which factors may be worth controlling by a military or civilian geostationary satellite operator. Our simulations show that the most beneficial factor for maximizing the time a satellite will remain in the station keeping window is the operational practice of pre-emptively loading East-West station keeping maneuvers for automatic execution on board the satellite should ground control capability be lost. The second most beneficial factor is using short station keeping maneuver cycle durations.

A Numerical Approach for Station Keeping of Geostationary Satellite Using Hybrid Propagator and Optimization Technique

  • Jung, Ok-Chul;No, Tae-Soo;Kim, Hae-Dong;Kim, Eun-Kyou
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.122-128
    • /
    • 2007
  • In this paper, a method of station keeping strategy using relative orbital motion and numerical optimization technique is presented for geostationary satellite. Relative position vector with respect to an ideal geostationary orbit is generated using high precision orbit propagation, and compressed in terms of polynomial and trigonometric function. Then, this relative orbit model is combined with optimization scheme to propose a very efficient and flexible method of station keeping planning. Proper selection of objective and constraint functions for optimization can yield a variety of station keeping methods improved over the classical ones. Nonlinear simulation results have been shown to support such concept.

THE ORBIT DETERMINATION TECHNIQUE OF GEOSTATIONARY SATELLITE USING STAR SENSING FUNCTION OF THE METEOROLOGICAL IMAGER

  • Kim Bang-Yeop;Yoon Jae-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.694-697
    • /
    • 2005
  • A conceptual study about the angle information based orbit determination technique for a geostationary satellite was performed. With an assumption that the simultaneous observing of the earth and nearby stars is possible, we confirmed that the view angles between the earth and stars can be use as inputs for orbit determination process. By the MA TLAB simulation with least square method, the convergence is confirmed. This conceptual study was performed with the COMS for instance. This technique will be able to use as a back-up of ground station's orbit determination or a part of autonomous satellite operation.

  • PDF