• Title/Summary/Keyword: Geotextile tubes

Search Result 20, Processing Time 0.018 seconds

Characterization of stacked geotextile tube structure using digital image correlation

  • Dong-Ju Kim;Dong Geon Son;Jong-Sub Lee;Thomas H.-K. Kang;Tae Sup Yun;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.385-394
    • /
    • 2023
  • Displacement is an important element for evaluating the stability and failure mechanism of hydraulic structures. Digital image correlation (DIC) is a useful technique to measure a three-dimensional displacement field using two cameras without any contact with test material. The objective of this study is to evaluate the behavior of stacked geotextile tubes using the DIC technique. Geotextile tubes are stacked to build a small-scale temporary dam model to exclude water from a specific area. The horizontal and vertical displacements of four stacked geotextile tubes are monitored using a dual camera system according to the upstream water level. The geotextile tubes are prepared with two different fill materials. For each dam model, the interface layers between upper and lower geotextile tubes are either unreinforced or reinforced with a cementitious binder. The displacement of stacked geotextile tubes is measured to analyze the behavior of geotextile tubes. Experimental results show that as upstream water level increases, horizontal and vertical displacements at each layer of geotextile tubes initially increase with water level, and then remain almost constant until the subsequent water level. The displacement of stacked geotextile tubes depends on the type of fill material and interfacial reinforcement with a cementitious binder. Thus, the proposed DIC technique can be effectively used to evaluate the behavior of a hydraulic structure, which consists of geotextile tubes.

Stress and strain behavior investigation on a scale model geotextile tube for Saemangeum dike project

  • Kim, Hyeong-Joo;Lee, Kwang-Hyung;Jo, Sung-Kyeong;Jamin, Jay C.
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.309-325
    • /
    • 2014
  • Geotextile tubes are basically a huge sack filled with sand or dredged soil. Geotextile tubes are made of permeable woven or non-woven synthetic fibers (i.e., polyester or PET and polypropylene or PP). The geotextile tubes' performances in strength, dewatering, retaining solid particles and stacked stability have been studied extensively in the past. However, only little research has been done in the observation of the deformation behavior of geotextile tubes. In this paper, a large-scale apparatus for geotextile tube experiment is introduced. The apparatus is equipped with a slurry mixing station, pumping and delivery station, an observation station and a data station. For this study the large-scale apparatus was utilized in the studies regarding the stresses on the geotextile and the deformation behavior of the geotextile tube. Model tests were conducted using a custom-made woven geotextile tubes. Load cells placed at the inner belly of the geotextile tube to monitor the total soil pressure. Strain gauges were also placed on the outer skin of the tube to measure the geotextile strain. The pressure and strain sensors are attached to a data logger that sends the collected data to a desktop computer. The experiment results showed that the maximum geotextile strain occurs at the sides of the tube and the soil pressure distribution varies at each geotextile tube section.

Consolidation Analysis of Geotextile Tubes Filled with Highly Compressible Sludge Using Variable Coefficients of Consolidation

  • Kim, Hyeongjoo;Kim, Hyeongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.25-32
    • /
    • 2021
  • Geotextile tube technology has been perceived as an economical solution for liquid sludge treatment, and analyzing its consolidation behavior is necessary to be able to evaluate the dewatering capabilities of large geotextile tubes filled with contaminated soil, tailings, sewage sludge, and so on. The objectives of this study are to present a method that can adequately convey the consolidation behavior of geotextile tubes filled with sewage sludge, and to investigate the effects of various geotextile tube consolidation parameters. In this study, variable coefficients of consolidation are utilized to analyze the consolidation process of geotextile tubes filled with sewage sludge. The consolidation solution was verified by comparing the measured and predicted data from a hanging bag test conducted in the literature. After verifying the proposed solution, the consolidation parameters of a geotextile tube composed of a woven polypropylene outer layer and a non-woven polypropylene layer filled sewage sludge were obtained. Using the obtained parameters, the consolidation behavior of a large-scale composite geotextiles tube was predicted.

Hydrodynamic Behavior Analysis of Stacked Geotextile Tube by Hydraulic Model Tests (수리모형시험을 통한 다단식 지오텍스타일 튜브의 수리동역학적 거동분석)

  • 신은철;오영인;김성윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.705-712
    • /
    • 2002
  • Geotextile tube is environmentally sustainable technology and has been applied in hydraulic and coastal engineering applications. Geotextile tube is composed in permeable fabrics and Inside dredged materials, and hydraulically or mechanically filled with dredged materials. These tube are generally about 1.0m to 2.0m in diameter, through they can be sized for any application. The tubes can be used solely, or stacked to add greater height and usability. Stacked geotextile tubes will create by adding the height necessary for some breakwaters and embankment, therefore increasing the usability of geotextile tubes. This paper presents the hydrodynamic behavior of stacked geotextile tube by hydraulic model tests. The hydraulic model test conducted by structural condition and wave conditions. Structural condition is installation direction to the wave(perpendicular band 45$^{\circ}$), and wave condition is varied with the significant wave height ranging from 3.0m to 6.0m. Based on the test results, the hydrodynamic behaviors such as structural stability, wave control capacity, and strain are interpreted.

  • PDF

Derivation of design charts based on the two-dimensional structural analysis of geotextile tubes

  • Kim, Hyeong-Joo;Won, Myoung-Soo;Park, Tae-Woong;Choi, Min-Jun;Jamin, Jay C.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.349-364
    • /
    • 2015
  • Analytical solutions for modeling geotextile tubes during the filling process and approximation method to determine the densified tube shape are reviewed. The geotextile tube filling analysis is based on Plaut & Suherman's two-dimensional solution for geotextile tubes having a weightless and frictionless inextensible membrane resting on a rigid horizontal foundation subjected to internal and external hydrostatic pressures. The approximation for the densified tube shape developed by Leshchinsky et al. was adopted. A modified method for approximating the densified tube shape based on an areal-strain deformation analysis is introduced. Design diagrams useful for approximating geotextile tube measurements in the design process are provided.

Evaluation of Shear Strength at Interface Between Geotextile and Cementitious Binder Materials (시멘트계 결합재가 적용된 지오텍스타일의 접촉면 전단강도 평가)

  • Son, Dong-Geon;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.91-98
    • /
    • 2022
  • Multi-layered geotextile tubes may have problems on its stability when used as cofferdam. This study presents the shear strength characteristics at the interface between geotextiles and a cementitious binder material to improve the stability of the multi-layered geotextile tubes. In this study, two different types of geotextiles are used. After mixing with a rapid setting cement, fly ash, sand, accelerator, and water, the cementitious binder material is prepared at the interface between two geotextile samples and cured under water for a desired period. The specimen is placed on upper and lower direct shear boxes by using clamping systems. A series of direct shear tests for two different geotextiles are performed along the curing time under three vertical stresses. Experimental results show that the shear strength at the interface between the cementitious binder material and geotextiles is greater than that at the interface between two geotextiles. For two types of geotextiles, apparent cohesion occurs at the interface between the cementitious binder material and geotextiles. In addition, the friction angles for any curing time are improved, compared to the interface between two geotextiles. The cementitious binder material suggested for the interface between two geotextiles may be useful for the reinforcement of multi-layered geotextile tubes.

A Study of Dewatering and Filtration on Woven Geotextile Tube (직포 지오텍스타일 튜브의 여과와 탈수에 대한 연구)

  • Kim, Tae-Hyung;Jung, Soo-Jung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.31-37
    • /
    • 2006
  • The purposes of this paper are to study the use possibility of geotextile tubes for dewatering of high water content sludges and sediments and to evaluate affecting factors on dewatering. To do this, pressure filtration tests are conducted on four high water content materials with two geotextiles under two filtration pressures. Based on the test results, although woven geotextile tubes are not satisfied the soil retention criteria used in filter design commonly, a great portion of fines are retained by filter cake formation on geotextile tube's upstream side, but also after formation of filter cake, the permeability drops sharply. Higher filtration pressure tends to increase dewatering rate, but has very little effect on filtration efficiency. Dewatering capacity is affected by several factors which are related to the geotextile, but the property of sludge appears to be the dominant control factor for dewatering efficiency.

  • PDF

Installation Technology and Behavior of Silty Clay Filled Geotextile Tube (실트질 점토 채움 시 지오텍스타일 튜브의 거동 및 시공 방법에 관한 연구)

  • Shin, Eun-Chul;Oh, Young-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(detached breakwater, groins and jetty). The geotextile tubes are made of sewn geosynthetics sheets. If the sandy soil is use to fill material, these inlets should be spaced closely to assure uniform filling of the tubes because sandy soil and geosynthetic is very pervious. However, the clayey soil or contaminated slurry is used, the inlets can be located relatively long distance. The fine clayey particles tend to rapidly blind the fabric slowing down water escape through the geotextile. This paper presents a field test result of a geotextile tube in the land reclamation project for the Songdo New City construction site. The dredged silty clay was dredged by the dredging ship and hydraulically pumped into the geotextile tube. The height of geotextile tube was measured at every filling stage and also measured width and diameter of geotextile tube with the elapsed time. Based on the test results, if the clayey filling material is used, the pumping step must be divided 3~4 stages for drainage and sediment. After complete drainage, the height of the geotextile tube reduces by approximately 50%.

  • PDF

Hydraulic Stability and Wave Transmit Property of Stacked Geotextile Tube by Hydraulic Model Test (수리모형시험을 통한 다단식 지오텍스타일 튜브의 안정성 및 파랑 전달특성에 관한 연구)

  • Oh Young In;Shin Eun Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2005
  • Geotextile have been used for the past 30 years for various types of containers, such as small sandbag, 3-D fabric forms and aggregate filled gabion etc. While they are mainly used for flood and water control, they are also used against beach erosion fir shore protection. Especially, large-sized geotextile tube structures are used in various innovative coastal systems involving breakwaters. This paper presents the hydrodynamic behavior of geotextile tubes based on the results of hydraulic model tests. These tube are generally about 1.0 m to 2.0 m in diameter, thou띤 they can be sized for any application. The tubes can be used solely, or stacked to add greater height and usability. Stacked geotextile tubes will be created by adding the height necessary for some breakwaters and embankment, therefore increasing the usability of geotextile tubes. The hydraulic model test was conducted as structural condition and wave conditions. Structural condition is installation direction to the wave (perpendicular and 45$^{circ}$$), and wave condition is varied with the significant wave height ranging from 3.0 m to 6.0 m. Compared with previous test result, the stacked geotextile tube is more stable against wave attack than single tube. Also, the case of none-water depth above crest is more stable than 0.5H of water depth above crest. The incline installed stacked tube is more effective for wave adsorption.

Construction Monitoring of Geotextile Tube at Young-Jin Bay and Stability Analysis by Hydraulic Model Tests (영진만 지오텍스타일 튜브의 현장 시공계측 및 수리모형시험을 통한 안정성분석)

  • 신은철;오영인;이명호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.549-556
    • /
    • 2002
  • Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). It can also be used to isolate contaminated material from harbor, detention basin dredging, and to use this unit as dikes for reclamation work. Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. The stability analysis of geotextile tube is composed geotechnical and hydrodynamic analysis. The stability check points are sliding failure, overturning, bearing capacity failure against the wave attack. In this paper presented the construction procedure and in-situ measurement(properties of filling material, effective height variation, stress variation at geotextile tube bottom) of geotextile tube at Young-Jin Bay and stability analysis by theoretical method and hydraulic model tests

  • PDF