• Title/Summary/Keyword: Ginseng seed

Search Result 226, Processing Time 0.024 seconds

Analysis of Ginsenoside Composition of Ginseng Berry and Seed

  • Ko, Sung-Kwon;Bae, Hye-Min;Cho, Ok-Sun;Im, Byung-Ok;Chung, Sung-Hyun;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1379-1382
    • /
    • 2008
  • This study was performed to provide basic information that can be used to differentiate Korean ginseng (Panax ginseng CA. Meyer) berry and seed from American ginseng (Panax quinquefolium L.) seed. Total ginsenoside contents of Korean ginseng berry, Korean ginseng seed, and American ginseng seed were 9.09, 3.30, and 4.06%, respectively. Total ginsenoside content of Korean ginseng berry was about 2.2 to 2.7 times higher than those of Korean ginseng seed and American ginseng seed. Particularly ginsenoside Re content of 4-year cultivated Korean ginseng berry (5.99%) was about 3.6 to 5.4 times higher than that of 4-year cultivated Korean ginseng seed (1.65%) and 4-year cultivated American ginseng seed (1.10%). The contents of total ginsenoside and ginsenoside Re of Korean ginseng berry were about 4.8 and 28 times higher, respectively, than those of 4-year cultivated Korean ginseng root. In general the contents of total ginsenoside and ginsenoside Re of Korean ginseng berry were significantly higher than those of Korean ginseng seed and American ginseng seed.

Quality and characteristics of ginseng seed oil treated using different extraction methods

  • Lee, Myung-Hee;Kim, Sung-Soo;Cho, Chang-Won;Choi, Sang-Yoon;In, Gyo;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.468-474
    • /
    • 2013
  • Ginseng seed oil was prepared using compressed, solvent, and supercritical fluid extraction methods of ginseng seeds, and the extraction yield, color, phenolic compounds, fatty acid contents, and phytosterol contents of the ginseng seed oil were analyzed. Yields were different depending on the roasting pretreatment and extraction method. Among the extraction methods, the yield of ginseng seed oil from supercritical fluid extraction under the conditions of 500 bar and $65^{\circ}C$ was the highest, at 17.48%. Color was not different based on the extraction method, but the b-value increased as the roasting time for compression extraction was increased. The b-values of ginseng seed oil following supercritical fluid extraction were 3.54 to 15.6 and those following compression extraction after roasting treatment at $200^{\circ}C$ for 30 min, were 20.49, which was the highest value. The result of the phenolic compounds composition showed the presence of gentisic acid, vanillic acid, ferulic acid, and cinnamic acid in the ginseng seed oil. No differences were detected in phenolic acid levels in ginseng seed oil extracted by compression extraction or solvent extraction, but vanillic acid tended to decrease as extraction pressure and temperature were increased for seed oil extracted by a supercritical fluid extraction method. The fatty acid composition of ginseng seed oil was not different based on the extraction method, and unsaturated fatty acids were >90% of all fatty acids, among which, oleic acid was the highest at 80%. Phytosterol analysis showed that ${\beta}$-sitosterol and stigmasterol were detected. The phytosterol content of ginseng seed oil following supercritical fluid extraction was 100.4 to 135.5 mg/100 g, and the phytosterol content following compression extraction and solvent extraction was 71.8 to 80.9 mg/100 g.

Quality and characteristics of fermented ginseng seed oil based on bacterial strain and extraction method

  • Lee, Myung-Hee;Rhee, Young-Kyoung;Choi, Sang-Yoon;Cho, Chang-Won;Hong, Hee-Do;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.428-433
    • /
    • 2017
  • Background: In this study, the fermentation of ginseng seeds was hypothesized to produce useful physiologically-active substances, similar to that observed for fermented ginseng root. Ginseng seed was fermented using Bacillus, Pediococcus, and Lactobacillus strains to extract ginseng seed oil, and the extraction yield, color, and quantity of phenolic compounds, fatty acids, and phytosterol were then analyzed. Methods: The ginseng seed was fermented inoculating 1% of each strain on sterilized ginseng seeds and incubating the seeds at $30^{\circ}C$ for 24 h. Oil was extracted from the fermented ginseng seeds using compression extraction, solvent extraction, and supercritical fluid extraction. Results and Conclusion: The color of the fermented ginseng seed oil did not differ greatly according to the fermentation or extraction method. The highest phenolic compound content recovered with the use of supercritical fluid extraction combined with fermentation using the Bacillus subtilis Korea Food Research Institute (KFRI) 1127 strain. The fatty acid composition did not differ greatly according to fermentation strain and extraction method. The phytosterol content of ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method was highest at 983.58 mg/100 g. Therefore, our results suggested that the ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method can yield a higher content of bioactive ingredients, such as phenolics, and phytosterols, without impacting the color or fatty acid composition of the product.

The Effects of Various Dehiscence Materials, Growth Regulators and Fungicides on the of Ginseng Seed ( Panax ginseng C A. Meyer ) (개갑처리재료, 생장조절제 및 살충제가 고려인삼종자의 개갑에 미치는 영향)

  • 양덕조;천성기
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.56-66
    • /
    • 1982
  • The effects of various dehiscent application such as dehiscent materials (big chaffs, vermiculite etc.), growth regulators and agricultural chemicals (plant protector.) on stimulation of dehiscence and shortening of dehiscent period were investigated Results obtained were as follows : 1. The moisture content of endosperm and seed coat at 10 day after dehiscent application amounts between 40% and 50%. 2. Endosperm diameter was increased with time of stratification, and the embryo growth showed in linear function, 3. Non-dehiscent seed showed also normally development of embryo, and the property of dehiscence dependent from physico-chemical nature of ginseng seed coat. 4. The best dehiscent materials were big chaffs and followed vermiculite, sand and sand with big chaffs. 5. The effect of dehiscence of ginseng seed showed higher activity in fungi than in bacteria in general. 6. Agricultural chemicals ( plant Protector) reduced the dehiscent rate of ginseng seed 7. The best timing of dehiscent treatment was between August 1 and August 10 but the smaller amount of dehiscent rate after August 10 dehiscent appllication indicated that big chaffs and growth regulator treatment may be controlled shortening of dehiscent period of ginseng seed.

  • PDF

Changes of Fatty Acids, Minerals and Ginsenosides on Ginseng Seeds during Stratifying Treatment (개갑처리기간에 따른 품종별 인삼종자의 지방산, 무기이온 및 사포닌 조성의 변화)

  • Lee, Ka Soon;Seong, Bong Jae;Kim, Sun Ick;Han, Seung Ho;Kim, Hyun Ho;Won, Jun Yeon;Kim, Gwan Hou
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.5
    • /
    • pp.406-413
    • /
    • 2015
  • Background : This study was carried out to investigate the changes to fatty acid, mineral, and ginsenosides contents in ginseng seed when they were stratified for different length of time and to determine whether variety had any effects on the changes. The aim was to improve the ginseng seed stratification process. Methods and Results : The ginseng varieties used were Geumpoong, Chunpoong, Yunpoong, and K-1. Stratifying periods treated on ginseng seed were 0, 20, 40, 60, 80, and 100 days. The main fatty acids of ginseng seed were oleic acid (C18 : 1, n9c) with a content of 78.40 - 79.20% followed by linoleic acid (C18 : 2, n6c). The main mineral in the seeds was potassium (K), at 1208.2 -1337.6 mg/100 g. The main ginsenosides in ginseng seed were ginsenoside Re and Rb1. Increasing the length of the stratification periods led to increases in oleic acid content (60 - 80 days), however after this the content declined. In contrast, linoleic acid content fell as the stratification period increased. K, P, Mg, Ca and Na content rose as the stratification period increased. The ginsenoside Re content of Chunpoong and K-1 cultivar seeds also rose as the stratification period increased which meant that total ginsenoside content increased. However, ginsenoside Re content rose in Geumpoong and Yunpoong seeds, but total ginsenoside content decreased as the stratification period increased. Conclusions : Some beneficial compound in ginseng seed rose as the stratification period increased. Therefore, ginseng seed stratification could improve the food value of ginseng.

Enhancement of Seed Dehiscence by Seed Treatment with Talaromyces flavus GG01 and GG04 in Ginseng (Panax ginseng)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Kim, Seok-Cheol
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Seed dehiscence of ginseng (Panax ginseng C. A. Mayer) is affected by moisture, temperature, storage conditions and microbes. Several microbes were isolated from completely dehisced seed coat of ginseng cultivars, Chunpoong and Younpoong at Gumsan, Korea. We investigated the potential of five Talaromyces flavus isolates from the dehiscence of ginseng seed in four traditional stratification facilities. The isolates showed antagonistic activities against fungal plant pathogens, such as Cylindrocarpon destructans, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia nivalis, Botrytis cinerea, and Phytophthora capsici. The dehiscence ratios of ginseng seed increased more than 33% by treatment of T. flavus GG01, GG02, GG04, GG12, and GG23 in comparison to control (28%). Among the treatments, the reformulating treatment of T. flavus isolates GG01 and GG04 showed the highest of stratification ratio of ginseng seed. After 16 weeks, the reformulating treatment of T. flavus isolates GG01 and GG04 significantly enhanced dehiscence of ginseng seed by about 81% compared to the untreated control. The candidate's treatment of T. flavus GG01 and GG04 showed the highest decreasing rate of 93% in seed coat hardness for 112 days in dehiscence period. The results suggested that the pre-inoculation of T. flavus GG01 and GG04 found to be very effective applications in improving dehiscence and germination of ginseng seed.

Quality and Sensory Characteristics of Bechamel Sauce with Ginseng (Panax ginseng C.A. Meyer) Seed (인삼씨를 첨가한 베샤멜 소스의 품질 및 관능적 특성)

  • Hong, Woo Pyo
    • Culinary science and hospitality research
    • /
    • v.23 no.4
    • /
    • pp.135-143
    • /
    • 2017
  • This study aimed to reduce the oily taste of Bechamel sauce, and improve consumers' acceptability and functionality by adding Ginseng seed inside. This study also performed quantitative description analysis and acceptability test in order to see its unique sensory characteristics. The results were as follows: The viscosity and moisture content decreased as ginseng seeds got added. This may be due to decrease in relative amount of flour. In terms of color, brightness (L) and yellowness (b) tended to decrease as ginseng seeds were added, while redness (a) showed just the opposite propensity. The salinity became higher with more ginseng seed, however, soluble solid content showed no significant difference among the samples. From the result of quantitative and descriptive analysis among the sensory tests, the concentration of Bechamel sauce got higher with more ginseng seed, where the fragrance and the taste of ginseng were sensed strongly, while fragrance of milk, flour, and nuts were considered weak. Also, sense of stuffiness, oiliness, and tenderness has decreased as well. From the acceptability test, adding 30% of ginseng seed got the highest ratings in terms of fragrance, taste, afterward-taste, and overall acceptability. Therefore, adding ginseng seed positively affected Bechamel sauce in taste, smell, after-taste, and general acceptability. Moreover, when the added amount of ginseng seed was 30% compared to the flour, the taste of Bechamel sauce was relatively optimized. From the test results, it can be concluded that ginseng seed injected in Bechamel sauce improved nutritive facts and the taste acceptability as well, and 30% compared to the flour amount was the right amount to maximize consumers' acceptance of Bechamel sauce.

Effect of Seed Size on Seedling Performance in Panax g.inseng (종자의 크기가 묘삼의 생육에 미치는 영향)

  • Kim, Jong-Man;Lee, Seong-Sik;Kim, Yo-Tae
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.85-91
    • /
    • 1981
  • Ginseng seeds were gathered from 3,4,5 and 6 years of age and were classified into four qroups (below 4mm, 4∼5mm, 5∼6mm and above 6mm in across sieve). They were sown in seedling bed and some characters were investigated in each qroup of seed size. 1. The distribution of seed size of below 4mm, 4-5mm, 5-6mm and 6mm were 23.7%, 60.8%, 12.4% and 4.5%, respectively. 2. The ratio of seed coat dehiscence was not affected by seed size but emergence ratio and emerging vigor were superior in large seed. 3. The large seed showed superiority in stem length, stem diameter, leat and also in root length, root diameter and root weight. but diseased root was not affected by seed size. The effect of age(seed harvest) was not significant on all those characters.

  • PDF

Comparison of Seed Oil Characteristics from Korean Ginseng, Chinese Ginseng (Panax ginseng C.A. Meyer) and American Ginseng (Panax quinquefolium L.)

  • Zhu, Xue-Mei;Hu, Jiang-Ning;Shin, Jung-Ah;Lee, Jeung-Hee;Hong, Soon-Teak;Lee, Ki-Teak
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.275-281
    • /
    • 2010
  • The chemical characteristics of seed oils of Asian ginseng (Panax ginseng C.A. Meyer) at different ages grown in Korea (3, 4 and 5-year old) and China (5-year old), and American ginseng (Panax quinquefoliu L., 5-year old) grown in China were compared. Total fatty acid composition showed a significantly higher oleic acid content in American (87.50%) than in Korean (68.02~69.14%) and Chinese ginseng seed oils (61.19%). At the sn-2 position, the highest oleic acid (81.09%) and lowest linoleic acid (15.77%) were found in American ginseng seed oil. The main triacylglycerol species in ginseng seed oils were triolein (OOO) and 1,2-dioleoyl-3-linoleoyl-glycerol (LOO)/1,3-dioleoyl-2-linoleoyl-glycerol (OLO). In addition, the seed oils possessed an ideal oxidative stability showing 16.55~23.12 hr of induction time by Rancimat test. The results revealed that ginseng seed oil could be developed as a new healthy edible oil, and that the oil's chemical characteristics were strongly associated with the ginseng species and habitats.

Structural Changes and Histochemical Study of Endosperm on Panax ginseng C.A. Meyer during Embryo Development (인삼(Panax ginseng C.A. Meyer) 종자의 배발달에 따른 배유의 구조변화 및 조직화학적 연구)

  • 유성철;김유갑
    • Journal of Ginseng Research
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 1992
  • Structural changes of the endosperm of Panax ginseng C.A. Meyer from fertilization to germination were investigated by light microscope. The endosperm of the ginseng seed is cellular type. Since endosperm cells adjacent embryo continuously breakdown and disappear with the elongation of embryo, the real of endosperm is gradually decreased. As the anatropous ovules of immature seed with green seed coat developes more and more, ovary cells adjacent ovary cavity become abundant by the periclinal division, their size is decreased, hypotrophy of cell wall discern, and they are gradually differentiated in seed coat. Though embryo responds strongly to basic dye at the stage of completion of endosperm formation, tissue of endosperm responds to acidic dye positively Cell wall of embryo and endosperm are composed of primary cell wall not lignified. Endosperm cells adjacent embryo begin to breakdown in the endosperm tissue of indehiscent seed before the beginning of the after-ripening. Dehiscent seed of which seed coat is opened through after-ripening represent the form as a seedling in the result of embryo developments with the formation of organs; radicle, cotyledon, plumule. Umbilifom layer represents strong positive response to the toluidine blue and the basic function. Umbiliform layer that endosperm cells breakdown and disappear is observed clearly at the periphery of the embryo cotylemon, while slightly at the periphery of the radicle.

  • PDF