• Title/Summary/Keyword: Ginsenoside %24Rk_3%24

Search Result 8, Processing Time 0.028 seconds

Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis

  • Hu, Jun-Nan;Xu, Xing-Yue;Li, Wei;Wang, Yi-Ming;Liu, Ying;Wang, Zi;Wang, Ying-Ping
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.10-19
    • /
    • 2019
  • Background: Frequent overdose of paracetamol (APAP) has become the major cause of acute liver injury. The present study was designed to evaluate the potential protective effects of ginsenoside Rk1 on APAP-induced hepatotoxicity and investigate the underlying mechanisms for the first time. Methods: Mice were treated with Rk1 (10 mg/kg or 20 mg/kg) by oral gavage once per d for 7 d. On the 7th d, allmice treated with 250mg/kg APAP exhibited severeliverinjury after 24 h, and hepatotoxicitywas assessed. Results: Our results showed that pretreatment with Rk1 significantly decreased the levels of serum alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor, and interleukin-$1{\beta}$ compared with the APAP group. Meanwhile, hepatic antioxidants, including superoxide dismutase and glutathione, were elevated compared with the APAP group. In contrast, a significant decrease in levels of the lipid peroxidation product malondialdehyde was observed in the ginsenoside Rk1-treated group compared with the APAP group. These effects were associated with a significant increase of cytochrome P450 E1 and 4-hydroxynonenal levels in liver tissues. Moreover, ginsenoside Rk1 supplementation suppressed activation of apoptotic pathways by increasing Bcl-2 and decreasing Bax protein expression levels, which was shown using western blotting analysis. Histopathological observation also revealed that ginsenoside Rk1 pretreatment significantly reversed APAP-induced necrosis and inflammatory infiltration in liver tissues. Biological indicators of nitrative stress, such as 3-nitrotyrosine, were also inhibited after pretreatment with Rk1 compared with the APAP group. Conclusion: The results clearly suggest that the underlying molecular mechanisms in the hepatoprotection of ginsenoside Rk1 in APAP-induced hepatotoxicity may be due to its antioxidation, antiapoptosis, anti-inflammation, and antinitrative effects.

Three New Dammarane Glycosides from Heat Processed Ginseng

  • Park, Il-Ho;Kim, Na-Young;Han, Sang-Beom;Kim, Jong-Moon;Kwon, Sung-Won;Kim, Hyun-Jung;Park, Man-Ki;Park, Jeong-Hill
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.428-432
    • /
    • 2002
  • Three new dammarane glycosides were isolated from the processed ginseng (SG; Sun Ginseng). Their structure were determined to be $3{\beta},{\;}12{\beta}-dihydroxydammar-20(21),24-diene-3-O-{\beta}-D-glucopyranosyl(1{\;}{\rightarrow}{\;}2)-{\beta}-D-glucopyranoside;{\;}3{\beta},{\;}12{\beta}-dihydroxydammar-20(21),24-diene-3-O-{\beta}-D-{\;}glucopyranoside{\;}and{\;}3{\beta},6{\alpha},12{\beta}-trihydroxydammar-20(21),24-diene-6-O-{\beta}-D-glucopyranoside$ based on spectroscopic evidences. The compounds were named as ginsenoside $Rk_1,{\;}Rk_2,{\;}and{\;}Rk_3$ respectively.

Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupole-time-of-flight MS

  • Shen, Wenwen;Wei, Yingjie;Tang, Daoquan;Jia, Xiaobin;Chen, Bin
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • Background: In the present study, metabolite profiles of ginsenosides Rk1 and Rg5 from red ginseng or red notoginseng in zebrafish were qualitatively analyzed with ultraperformance liquid chromatography/quadrupole-time-of-flight MS, and the possible metabolic were pathways proposed. Methods: After exposing to zebrafish for 24 h, we determined the metabolites of ginsenosides Rk1 and Rg5. The chromatography was accomplished on UPLC BEH C18 column using a binary gradient elution of 0.1% formic acetonitrile-0.1% formic acid water. The quasimolecular ions of compounds were analyzed in the negative mode. With reference to quasimolecular ions and MS2 spectra, by comparing with reference standards and matching the empirical molecular formula with that of known published compounds, and then the potential structures of metabolites of ginsenosides Rk1 and Rg5 were acquired. Results: Four and seven metabolites of ginsenoside Rk1 and ginsenoside Rg5, respectively, were identified in zebrafish. The mechanisms involved were further deduced to be desugarization, glucuronidation, sulfation, and dehydroxymethylation pathways. Dehydroxylation and loss of C-17 residue were also metabolic pathways of ginsenoside Rg5 in zebrafish. Conclusion: Loss of glucose at position C-3 and glucuronidation at position C-12 in zebrafish were regarded as the primary physiological processes of ginsenosides Rk1 and Rg5.

Seven New Ginsenosides From a New Processed Ginseng

  • Park, Jeong-Hill;Kim, Jong-Moon;Han, Sang-Beom;Kim, Na-Young;Lee, Seung-Ki;Kim, Nak-Doo;Park, Man-Ki;Han, Byung-Hoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.175-175
    • /
    • 1998
  • We reported a new processed ginseng with increased biological activities which is named as “sun ginseng (SG)”. Study on the saponin constituents of SG led to the isolation of seven new ginsenosides named as ginsenoside Rk$_1$, Rk$_2$, Rk$_3$, Rs$_4$, Rs$\_$5/, Rs$\_$6/ and Rs$\_$7/. Ginsenoside Rk$_1$, Rk$_2$ and Rk$_3$ were the Δ$\^$20(21),24(25)/-diene dammarane compounds, while ginsenoside Rs$_4$, Rs$\_$5/, Rs$\_$6/ and Rs$\_$7/ were mono-acetylated compounds. Many other ginsenosides which were reported as minor constituents of red ginseng were also isolated, which include 20(S)-Rg$_3$, 20(R)-Rg$_3$, Rg$\_$5/, Rg$\_$6/, F$_4$, Rh$_4$, 20(S)-Rs$_3$ and 20(R)-Rs$_3$. The major ginsenosides of SG were 20(S)-Rg$_3$, 20(R)-Rg$_3$, Rk$_1$ and Rg$\_$5/.

  • PDF

Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity

  • Song, Bong-Kyu;Kim, Kyeng Min;Choi, Kang-Duk;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1233-1241
    • /
    • 2017
  • The ginsenoside Rh2 has strong anti-cancer, anti-inflammatory, and anti-diabetic effects. However, the application of ginsenoside Rh2 is restricted because of the small amounts found in Korean white and red ginsengs. To enhance the production of ginsenoside Rh2-MIX (comprising 20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3 as a 10-g unit) with high specificity, yield, and purity, a new combination of enzymatic conversion using the commercial enzyme Viscozyme L followed by acid treatment was developed. Viscozyme L treatment at pH 5.0 and $50^{\circ}C$ was used initially to transform the major ginsenosides Rb1, Rb2, Rc, and Rd into ginsenoside F2, followed by acid-heat treatment using citric acid 2% (w/v) at pH 2.0 and $121^{\circ}C$ for 15 min. Scale-up production in a 10-L jar fermenter, using 60 g of the protopanaxadiol-type ginsenoside mixture from ginseng roots, produced 24 g of ginsenoside Rh2-MIX. Using 2 g of Rh2-MIX, 131 mg of 20(S)-Rh2, 58 mg of 20(R)-Rh2, 47 mg of Rk2, and 26 mg of Rh3 were obtained at over 98% chromatographic purity. Then, the anti-cancer effect of the four purified ginsenosides was investigated on B16F10, MDA-MB-231, and HuH-7 cell lines. As a result, these four rare ginsenosides markedly inhibited the growth of the cancer cell lines. These results suggested that rare ginsenoside Rh2-MIX could be exploited to prepare an anti-cancer supplement in the functional food and pharmaceutical industries.

Fermentation of Red Ginseng using CKDHC 0801 and CKDHC 0802 (CKDHC 0801과 CKDHC 0802 균주를 이용한 홍삼발효)

  • Shin, Yong-Seo
    • Korean journal of food and cookery science
    • /
    • v.26 no.4
    • /
    • pp.469-474
    • /
    • 2010
  • In this study, we isolated two species of bacteria for the powerful biotrasnformation of ginsenosides from Kimchi and human feces. Using biochemical tests and 16s rRNA sequencing, the selected strains were identified as Latobacillusplantarum (CKDHC0801) and Lactobacillussakei (CKDHC0802). Changes in cell growth and pH were examined in red ginseng. CKDHC 0801 and CKDHC 0802 reached their maximum growth phase after 24 hr and 48 hr, respectively, whereas the combined culture of CKDHC 0801 and CKDHC 0802 showed higher cell growth than bacterial strain alone. During fermentation of CKDHC 0801 and the combined culture, the pH values decreased from 5.2 to 4.2 after 24 hr, but CKDHC 0802 reached pH of 4.2 after 3day. The identities of ginsenosides were biotransferred from high molecular (Rg1 and Rb2) to low molecular (Rg3, Rg5, Rk1, PPD) by fermentation of both bacteria. Therefore, the results of this study demonstrate that CKDHC 0801 and CKDHC 0802 could be used to enhance to effects of red ginseng.

Simultaneous quantification of six nonpolar ginsenosides in white ginseng by reverse-phase high-performance liquid chromatography coupled with integrated pulsed amperometric detection

  • Song, Hyeyoung;Song, Kyung-Won;Hong, Seon-Pyo
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.563-569
    • /
    • 2020
  • Background: White ginseng consists of the roots and rhizomes of the Panax species, and red ginseng is made by steaming and drying white ginseng. While red ginseng has both polar and nonpolar ginsenosides, previous studies showed white ginseng to have only polar ginsenosides. Because nonpolar ginsenosides are formed through the manufacture of red ginseng from white ginseng, researchers have generally thought that nonpolar ginsenosides do not exist in white ginseng. Methods: We developed a simultaneous quantitative method for six nonpolar ginsenosides in white ginseng using reverse-phase high-performance liquid chromatography coupled with integrated pulsed amperometric detection. The nonpolar ginsenosides of white ginseng were extracted for 4 h under reflux with 50% methanol. Results: Using the gradient elution system, all target components were completely separated within 50 min. Nonpolar ginsenosides were determined in the rhizome head (RH), main root (MR), lateral root, and hairy root (HR) of 6-year-old white ginseng samples obtained from several regions (Geumsan, Punggi, and Kanghwa). The total content in the HR of white ginseng was 37.8-56.8% of that in the HR of red ginseng. The total content in the MR of white ginseng was 5.9-24.3% of that in the MR of red ginseng. In addition, the total content in the RH of white ginseng was 28.5-35.8% of that in the HR of red ginseng Conclusion: It was confirmed that nonpolar ginsenosides known to be specific components of red ginseng were present at substantial concentrations in the HR or RH of white ginseng.

Changes of Ginsenosides and Color from Black Ginsengs Prepared by Steaming-Drying Cycles (흑삼 제조과정 중 증포 횟수에 따른 색상 및 진세노사이드 함량 변화)

  • Nam, Ki-Yeul;Lee, Nu-Ri;Moon, Byung-Doo;Song, Gyu-Yong;Shin, Ho-Sang;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • This study was conducted to investigate changes in composition of ginsenosides and color of processed ginsengs prepared by different steaming-drying times. Processed ginsengs were prepared from white ginseng with skin by 9-time repeated steaming at $96^{\circ}C$ for 3 hours and followed by hot air-drying at $50^{\circ}C$ for 24 hours. As the times of steaming processes increased, lightness (L value) decreased and redness (a value) increased in color of ginseng powders. Crude saponin contents and ginsenosides compositions in processed ginsengs prepared by different steaming-drying times were investigated using the HPLC method, respecively. Crude saponin contents according to increasing steaming-drying times decreased in some degree. In the case of major ginsenosides, the contents of $Rb_1$, $Rb_2$, Rc, Rd, Rf, Re, $RG_1$, Re were decreased with increase in steamimg times, but those of $Rh_1$, $Rg_3$, $Rk_1$ were increased after especially 3 times of steaming processes. Interestingly, in black ginseng were prepared by 9 times steaming processes, the content of ginsenoside $Rg_3$ was 8.20 mg/g, approximately 18 times higher than that (0.46 mg/g) in red ginseng. In addition, the ratio of the protopanaxadiol group and protopanaxatiol group (PD/PT) were increased from 1.9 to 8.4 due to increasing times of steamming process.