• Title/Summary/Keyword: Ginsenoside Re

Search Result 313, Processing Time 0.026 seconds

The Effects of Ginsenoside Re on High-Fat Diet induced Insulin Resistance in Muscle (Ginsenoside Re가 골격근의 고지방식 유도 인슐린 저항성에 미치는 영향)

  • Jung, Su-Ryun
    • Korean Journal of Exercise Nutrition
    • /
    • v.14 no.2
    • /
    • pp.75-80
    • /
    • 2010
  • We evaluated the effect of the ginsenoside Re on insulin resistance of glucose transport in muscles of rats made insulin resistant with a high fat diet. After a week of adaptation period to the laboratory environment, 40 male wistar rats were randomly assigned into 2 groups (Chow diet group; CD, n = 20, High fat diet group; HFD, n = 20). After 5-week of high fat diet, Food was removed after 6:00 PM the day before the experiment. The following morning, rats were anesthetized by an intraperitoneal injection of pentobarbital sodium (50 mg/kg body wt), and the soleus muscles were removed. Before incubation, the soleus muscle was split longitudinally into strips with an average weight of 15~20 mg. After the muscle dissection was completed, the abdominal cavity was opened, and the epididymal, mesenteric, and retroperitoneal fat pads were removed and weighed. Treatment of muscles with ginsenoside Re alone had no effect on glucose transport. The high fat diet resulted in ~50% decreases glucose transport rate in soleus muscles. Treatment of muscles with ginsenoside Re in vitro for 90 min completely reversed the high fat diet-induced insulin resistance of glucose transport in soleus muscles. This effect of ginsenoside Re is specific for insulin stimulated glucose transport, as Re treatment did not reverse the high fat diet-induced resistance of skeletal muscle glucose transport to stimulation by contraction. Our results show that the ginsenoside Re induces a remarkably rapid reversal of high fat diet-induced insulin resistance of muscle glucose transport.

A Study on the Tonic Effects of Ginseng - Effects of Ginseng Saponins on the Rat Heart (인삼의 강장효과에 관한 연구 - 백서 심장에 대한 인삼사포닌의 효과)

  • 김낙두;김충규;김봉기;한병훈;이상섭
    • YAKHAK HOEJI
    • /
    • v.24 no.1
    • /
    • pp.15-25
    • /
    • 1980
  • The investigation is concerned with the action of ginseng saponin on the contractile force in the rat heart and with the elucidation of the mechanism of the action. The effect of total ginseng saponin, ginsenoside Rb$_{1}$ of protopanaxadiol derivatives and ginsenoside Re of protopanaxatriol derivatives on the contractile force in isolated spontaneously beating normal rat heart was investigated. Total ginseng saponin was obtained from white ginseng by the method of Shibata and Namba. Ginsenoside Rb$_{1}$ and ginsenoside Re were isolated by the method of and Han, respectively. Total ginseng saponin exhibited a slight increase of the contractile force. Ginsenoside Rb$_{1}$ increased markedly the contractile force and dose dependent increase in contractile force was observed. However, ginsenoside Re did not increase the contractile force, but it prevented spontaneous decrease of the contractility of the heart. The mixture of the same dose of ginsenoside Rb$_{1}$ and Re showed a slight increase in the contractile force and its effect was similar to that obtained by total ginseng saponin. Pretreatment with propranolol abolished the positive inotropic effect of ginsenoside Rb$_{1}$ and the positive inotropic effect of ginsenoside Rb$_{1}$ was not observed in a reserpinized rat heart. Pretreatment with ginsenoside Re decreased or abolished the positive inotropic effect of epinephrine. Activities of Na+, K+ -ATPase were inhibited by ginsenoside Rb$_{1}$, total ginseng saponin and ginsenoside Re and these inhibitory effects were dose dependent. The results suggest that catecholamine release or inhibition of Na+, K+ -ATPase activities may be involved in the positive inotropic effect of gindenoside Rb$_{1}$. Ginsenoside Re counteracted the positive inotropic effect of ginsenoside Rb$_{1}$.

  • PDF

Ginsenoside Rc and Re Stimulate c-Fos Expression in MCF-7 Human Breast Carcinoma Cells

  • Lee, Young-Joo;Jin, Young-Ran;Lim, Won-Chung;Ji, Sang-Mi;Cho, Jung-Yoon;Ban, Jae-Jun;Lee, Seung-Ki
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • We have found that ginsenoside Rc and Re induce c-fos in MCF-7 human breast carcinoma cells at both the mRNA and protein levels. However, neither ginsenoside activated the expression of reporter gene under the control of AP-1/TPA response elements. We have also examined the possibility that ginsenoside Rc and Re act by binding to intracellular steroid hormone receptors that act as transcriptional factors in the nucleus in inducing c-fos mRNA in MCF7 human breast carcinoma cells. However, ginsenoside Rc and Re did not bind to glucocorticoid, androgen, estrogen, or retinoic acid receptors as examined by the transcription activation of the luciferase reporter genes in CV-1 cells that were transiently transfected with the corresponding steroid hormone receptors and hormone responsive luciferase reporter plasmids. These data demonstrate that ginsenoside Rc and Re act via other transcription factors and not via estrogen receptor in c-Fos expression.

Protective effect of ginsenoside Re on acute gastric mucosal lesion induced by compound 48/80

  • Lee, Sena;Kim, Myung-Gyou;Ko, Sung Kwon;Kim, Hye Kyung;Leem, Kang Hyun;Kim, Youn-Jung
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • The protective effect of ginsenoside Re, isolated from ginseng berry, against acute gastric mucosal lesions was examined in rats with a single intraperitoneal injection of compound 48/80 (C48/80). Ginsenoside Re (20 mg/kg or 100 mg/kg) was orally administered 0.5 h prior to C48/80 treatment. Ginsenoside Re dose-dependently prevented gastric mucosal lesion development 3 h after C48/80 treatment. Increases in the activities of myeloperoxidase (MPO; an index of neutrophil infiltration) and xanthine oxidase (XO) and the content of thiobarbituric acid reactive substances (TBARS; an index of lipid peroxidation) and decreases in the contents of hexosamine (a marker of gastric mucus) and adherent mucus, which occurred in gastric mucosal tissues after C48/80 treatment, were significantly attenuated by ginsenoside Re. The elevation of Bax expression and the decrease in Bcl2 expression after C48/80 treatment were also attenuated by ginsenoside Re. Ginsenoside Re significantly attenuated all these changes 3 h after C48/80 treatment. These results indicate that orally administered ginsenoside Re protects against C48/80-induced acute gastric mucosal lesions in rats, possibly through its stimulatory action on gastric mucus synthesis and secretion, its inhibitory action on neutrophil infiltration, and enhanced lipid peroxidation in the gastric mucosal tissue.

Preliminary Investigation of Membrane Modifying Effects of Ginseng Components (인삼성분 및 제제의 생체막 보호 효과에 대한 연구)

  • 한덕룡;김창종
    • Journal of Ginseng Research
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 1987
  • Prophylactic and curative behaviors of Panax ginseng components (95%, 50% ethanol ext., ginsenoside Re and Ginsana G 115) on the hepatomegaly, lipid peroxidation of the thioacetamide-intoxicated animals in vivo and in vitro were investigated. Ginsenoside Re and Ginsana G 115 significantly decreased in the lipid peroxide formation : the 95% ethanol extract and ginsenoside Re, in the zinc sulfate turbidity test. Besides these investigations, the preventive effect of ginseng components on the degranulation of mast calls in the guinea pig mesentery by compound 48/80 and venom toxin (Agkistrodon piscivourus) was also examined. All ginseng components subjected to this experiment were affected significantly at the different degrees.

  • PDF

Effect of B-complex vitamins on the antifatigue activity and bioavailability of ginsenoside Re after oral administration

  • Chen, Yin Bin;Wang, Yu Fang;Hou, Wei;Wang, Ying Ping;Xiao, Sheng Yuan;Fu, Yang Yang;Wang, Jia;Zheng, Si Wen;Zheng, Pei He
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.209-214
    • /
    • 2017
  • Background: Both ginsenoside Re and B-complex vitamins are widely used as nutritional supplements. They are often taken together so as to fully utilize their antifatigue and refreshing effects, respectively. Whether actually a drug-nutrient interaction exists between ginsenoside Re and B-complex vitamins is still unknown. The objective of this study was to simultaneously investigate the effect of B-complex vitamins on the antifatigue activity and bioavailability of ginsenoside Re after their oral administration. The study results will provide valuable theoretical guidance for the combined utilization of ginseng and B-complex vitamins. Methods: Ginsenoside Re with or without B-complex vitamins was orally administered to mice to evaluate its antifatigue effects and to rats to evaluate its bioavailability. The antifatigue activity was evaluated by the weight-loaded swimming test and biochemical parameters, including hepatic glycogen, plasma urea nitrogen, and blood lactic acid. The concentration of ginsenoside Re in plasma was determined by liquid chromatography-tandem mass spectrometry. Results: No antifatigue effect of ginsenoside Re was noted when ginsenoside Re in combination with B-complex vitamins was orally administered to mice. B-complex vitamins caused to a reduction in the bioavailability of ginsenoside Re with the area under the concentration-time curve from zero to infinity markedly decreasing from $11,830.85{\pm}2,366.47h{\cdot}ng/mL$ to $890.55{\pm}372.94h{\cdot}ng/mL$. Conclusion: The results suggested that there were pharmacokinetic and pharmacodynamic drug-nutrient interactions between ginsenoside Re and B-complex vitamins. B-complex vitamins can significantly weaken the antifatigue effect and decrease the bioavailability of ginsenoside Re when simultaneously administered orally.

Ginsenoside Re inhibits myocardial fibrosis by regulating miR-489/myd88/NF-κB pathway

  • Jinghui Sun;Ru Wang;Tiantian Chao;Jun Peng;Chenglong Wang;Keji Chen
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.218-227
    • /
    • 2023
  • Background: Myocardial fibrosis (MF) is an advanced pathological manifestation of many cardiovascular diseases, which can induce heart failure and malignant arrhythmias. However, the current treatment of MF lacks specific drugs. Ginsenoside Re has anti-MF effect in rat, but its mechanism is still not clear. Therefore, we investigated the anti-MF effect of ginsenoside Re by constructing mouse acute myocardial infarction (AMI) model and AngII induced cardiac fibroblasts (CFs) model. Methods: The anti-MF effect of miR-489 was investigated by transfection of miR-489 mimic and inhibitor in CFs. Effect of ginsenoside Re on MF and its related mechanisms were investigated by ultrasonographic, ELISA, histopathologic staining, transwell test, immunofluorescence, Western blot and qPCR in the mouse model of AMI and the AngII-induced CFs model. Results: MiR-489 decreased the expression of α-SMA, collagenI, collagen III and myd88, and inhibited the phosphorylation of NF-κB p65 in normal CFs and CFs treated with AngII. Ginsenoside Re could improve cardiac function, inhibit collagen deposition and CFs migration, promote the transcription of miR-489, and reduce the expression of myd88 and the phosphorylation of NF-κB p65. Conclusion: MiR-489 can effectively inhibit the pathological process of MF, and the mechanism is at least partly related to the regulation of myd88/NF-κB pathway. Ginsenoside Re can ameliorate AMI and AngII induced MF, and the mechanism is at least partially related to the regulation of miR-489/myd88/NF-κB signaling pathway. Therefore, miR-489 may be a potential target of anti-MF and ginsenoside Re may be an effective drug for the treatment of MF.

The Mass Balance of Protopanaxtriol Ginsenosides in Red Ginseng Process (홍삼제조과정 중 파낙사트리올계 진세노사이드의 물질균형)

  • Lee, Sang Myung
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.3
    • /
    • pp.223-228
    • /
    • 2015
  • This mass balance study about ginsenoside Rg1 and Re in Red ginseng processed from Fresh ginseng is useful to understand that herbal material sources of ginseng and raw material consumption in Red ginseng preparations. In our results, total molar amounts of ginsenoside Rg1, Re and their converts in Fresh ginseng, Red ginseng, and Red ginseng extract are substantially the same. The molar amounts of ginsenoside Rg1, Re (4.324, 2.880 μmol/g) as starting materials in Fresh ginseng are kept constant as total molar amounts (sum of starting and converts) in Red ginseng (4.264, 2.596 μmol/g) and Red ginseng extract (3.389, 3.129 μmol/g). This result means that protopanaxtriol type ginsenosides and their characteristic converts are not destroyed or inflowing in Red ginseng process. Therefore, it is important for quality assurance of Red ginseng preparations that the ratio between ginsenosides Rg1, Re and these converts is kept constant.

Effects of Interactions Among Age, Cultivation Method (Location) and Population on Ginsenoside Content of Wild Panax Quinquefolium L. One Year after Transplanting from Wild

  • Lim, Wan-Sang
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.254-261
    • /
    • 2005
  • To evaluate the effects of cultivar, environment, age and cultivation times on ginsenoside content among 8 wild populations of American ginseng (Panax quinquefolium), the concentrations of 6 ginsenosides in root were determined at the time of collection (T0) of plants from the wild and 1 year after (T1) transplanting the roots to each of two different forest garden locations. Both location and population had significant effects on root and shoot growth. Overall, ginsenoside Rb1 was most abundant. The second most abundant ginsenoside were Re and Rg1, however the contents of them were not significantly different from each other. Concentrations of Rg1 and Re were inversely related. Ginsenoside Re was influenced by population and location. Ginsenoside Rg1, Rb1, Rc, Rb2 and Rd were influenced by population, location and age. Ginsenoside levels were consistently lower but growth was consistently higher at the more intensively managed garden location.