• Title/Summary/Keyword: Glass transient temperature

Search Result 22, Processing Time 0.028 seconds

PZTN Sintered at the Low Temperature by the Glass Phase Transient Processing (글래스 천이 공정에 의해 저온소결된 PZTN)

  • Kim Chan Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.97-102
    • /
    • 2005
  • This research was a fundamental study for the low temperature sintering of PZTN by glass phase transient processing. To lower the sintering temperature, the glass phase Processing was used. Also to improve the electrical properties, the transient processing was utilized. After characterization, the various analytic techniques, such as Archimedes method for the measuring densification, x-ray diffraction patterns for the quantitative analysis of crystalline phases were utilized. Also the dielectric constant, dissipation factor, and piezoelectric coefficients were measured to evaluate the PZTN sintered at the $950^{\circ}C$ and $1050^{\circ}C$. This was confirmed that the sintering temperature of PZTN was reduced by $950^{\circ}C$ and the electrical properties were improved by the transition processing. Therefore, the glass phase transient processing can be applicable to low the sintering temperature with the dielectric and piezoelectric properties.

J-Integral under Transient Temperature State (천이온도 상태에서의 J적분)

  • 이강용;박정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1781-1791
    • /
    • 1991
  • For the cracked plate under transient temperature distribution, J-integral is expressed in the form of line integral by using convolution integral. The J$_{1}$ integral is calculated for a through line center cracked steel plate under thermal and mechanical loading conditions and the calculated values are in good agreement with previous results. The effect of inertia term on the J$_{1}$ integral is not negligible for a glass but for a steel. For the glass plate, the rates of J$_{1}$ integral value to time increase if the values of material properties such as specific heat, thermal conductivity, thermal diffusivity and Young`s modulus as well as crack length and temperature difference in cracked edge increase.

An Experimental Study on the Freeze Drying Process for Poly γ Glutamic Acid (폴리감마글루탐산의 동결 건조 과정의 실험적 연구)

  • Kang, Jisu;Sim, Yeon-Ho;Byun, Si-Ye;Chang, Young Soo;Kang, Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.645-651
    • /
    • 2015
  • This paper presents an experimental study on the freeze drying process for poly ${\gamma}$ glutamic acid. The physical properties of poly ${\gamma}$ glutamic acid are measured during the freeze-drying process. The moisture contents of poly ${\gamma}$ glutamic acid according to the glass transient temperature are obtained by DSC (Differential Scanning Calorimetry) analysis. The end point of primary drying for the poly ${\gamma}$ glutamic acid with a thickness of 3 mm is obtained by measuring the thickness of the dried layer, the amount of moisture evaporation, the moisture content, and the pressure in the drying vacuum chamber during the freeze-drying process. By considering the variation in the glass transient temperature with respect to the moisture content of the material, a control schedule for the heating plate temperature is suggested during the secondary drying process.

Experimental Study on Transient Heating of the Glass Panel in the Infrared Heating Chamber

  • Lee, Kong-Hoon;Kim, Ook-Joong;Ha, Su-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.499-502
    • /
    • 2004
  • The temperature distribution of a glass plate heated in the infrared heating chamber has been investigated. Temperature of the glass panel is measured using a set of thermocouples and the optical pyrometer. Temperatures measured by thermocouples have good agreement with those by the pyrometer. The temperature uniformity of the panel is improved with wall reflectivity, which is one of the important factors to uniformly heat the panel

  • PDF

Surface Temperature Measurement in Microscale with Temperature Sensitive Fluorescence (온도 민감 형광을 이용한 마이크로 스케일 표면온도 측정)

  • Jung Woonseop;Kim Sungwook;Kim Ho-Young;Yoo Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.153-160
    • /
    • 2006
  • A technique for measuring surface temperature field in micro scale is newly proposed, which uses temperature-sensitive fluorescent (TSF) dye coated on the surface and is easily implemented with a fluorescence microscope and a CCD camera. The TSF dye is chosen among mixtures of various chemical compositions including rhodamine B as the fluorescent dye to be most sensitive to temperature change. In order to examine the effectiveness of this temperature measurement technique, numerical analysis and experiment on transient conduction heat transfer for two different substrate materials, i. e., silicon and glass, are performed. In the experiment, to accurately measure the temperature with high resolution temperature calibration curves were obtained with very fine spatial units. The experimental results agree qualitatively well with the numerical data in the silicon and glass substrate cases so that the present temperature measurement method proves to be quite reliable. In addition, it is noteworthy that the glass substrate is more appropriate to be used as thermally-insulating locally-heating heater in micro thermal devices. This fact is identified in the temperature measuring experiment on the locally-heating heaters made on the wafer of silicon and glass substrates. Accordingly, this technique is capable of accurate and non-intrusive high-resolution measurement of temperature field in microscale.

A Study on Thermomechanical Analysis of Laser Ablation on Cr thin film (크롬박막의 레이저 어블레이션에서 열적.기계적 해석에 관한 연구)

  • 윤경구;장원석;이성국;김재구;나석주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.914-917
    • /
    • 2001
  • Single-shot laser damage of thin Cr films on glass substrates has been studied to understand the cracking and peeling-off mechanism. A numerical model is developed for the calculation of transient heat transfer and thermal stresses in Cr films during excimer laser irradiation and cooling, the transient temperature, and the stress-strain fields are analyzed by using a three-dimensional finite-element model of heat flow. According to the numerical analysis for the experimentally determined cracking and peeling-off conditions, cracking is found to be the result of the tensile brittle fracture due to the excessive thermal stresses formed during the cooling process, while peeling-off is found to be the combined result of films bulging from the softened glass surface at higher temperature and the tensile brittle fracture during the cooling process.

  • PDF

Study on Thermal Analysis for Heating System of Mobile Smart Device Cover Glass Molding Machine (Mobile Smart Device Cover Glass 성형기기의 가열시스템 열해석에 관한 연구)

  • Shin, Hwan June;Lee, Jun Kyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.50-55
    • /
    • 2014
  • Currently, flat cover glasses are widely applied to mobile devices. However, for a good design and for convenience of use, curved cover glasses are in demand. Thus, many companies are attempting to produce curved cover glasses using a shaving technique, but the production efficiency is very low. Therefore, a molding technique has been adopted to increase the efficiency of curved glass production systems. For a glass molding system, a uniform temperature distribution of the mold is crucial to produce high-quality curved cover glasses. Before setting the heating conditions of the molding system for a uniform temperature distribution by a thermal analysis, verification is required. Therefore, in this study, temperature measurements were conducted for a prototype molding system and the experimental results were compared with simulation computations. The temperatures of the heating block surface were in good agreement with the computational results for transient and steady conditions.

Low Temperature Sintering of PZTN by the Liquid Phase Transient Processing (액상천이공정에 의한 PZTN의 저온소결에 관한 연구)

  • Kim, Chan-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.593-598
    • /
    • 2001
  • Transient liquid phase processing was investigated to decrease processing temperatures while maintaining useful piezoelectric properties in the lead zirconate titanate (PZT) system. Niobium oxide$(Nb_2O_5)$ modified crystalline PZT (PZTN) powder was combined with lead silicate $(PS; PbO-SiO_2)$ glass powder and crystalline titania, zirconia, and niobia. Firing above the melting temperature of the lead silicate $(PS; Tm \risingdotseq\; 714^{\circk}C)$ resulted in liquid phase densification of the PZTN followed by dissolution of the titania, zirconia, and niobia into the liquid phase, and crystallization of additional PZTN. The addition of crystalline titania, zirconia, and niobia to react with the lead oxide from the lead silicate phase resulted in an increase in the dielectric and Piezoelectric properties.

  • PDF

Prediction of thermal shock failure of glass during PDP manufacturing process (PDP 제조 공정시 유리의 열충격 파손 예측)

  • 김재현;최병익;이학주
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.122-129
    • /
    • 2004
  • There is an increasing need for large flat panel display devices. PDP (Plasma Display Panel) is one of the most promising candidates for this need. Thermal shock failure of PDP glass during manufacturing process is a critical issue in PDP industry since it is closely related to the product yield and the production speed. In this study, thermal shock resistance of PDP glass is measured by water quenching test and an analysis scheme is described for estimating transient temperature and stress distributions during thermal shock. Based on the experimental data and the analysis results, a simple procedure for predicting the thermal shock failure of PDP glass is proposed. The fast cooling process for heated glass plates can accelerate the speed of PDP production, but often leads to thermal shock failure of the glass plates. Therefore, a design guideline for preventing the failure is presented from a viewpoint of high speed PDP manufacturing process. This design guideline can be used for PDP process design and thermal -shock failure prevention.

Transparent cryogenic thermosiphon using $N_2\;and\;CF_4$ mixture as the working fluid

  • Lee, Ji-Sung;Jeong, Sang-Kwon;Ko, Jun-Seok;Kim, Young-Kwon;Jung, Se-Yong;Han, Young-Hee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.37-40
    • /
    • 2009
  • A mixed working fluid has a potential to widen the operation temperature range of the thermosiphon. In this study, the thermosiphon using $N_2\;and\;CF_4$ mixture as the working fluid is fabricated and tested to verify its transient thermo hydraulic characteristic. A transparent pyrex glass tube was used for the thermosiphon itself and the vacuum chamber was also fabricated by glass to visualize the internal state of thermo siphon. Onset of condensation temperature was related to the partial pressure of $CF_4$. Two solidifications were observed and condensate temperature range of mixed working fluid was from 160K to 70.7K with $N_2$ 25% composition.