• 제목/요약/키워드: Glassfiber

검색결과 20건 처리시간 0.041초

자동차용 유리섬유강화 매트 수지(GMT) 범퍼의 충돌성능 평가 수치모사 (Impact Simulation of Automotive GMT Bumper)

  • 백승훈;문종근;정우식;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.137-140
    • /
    • 2003
  • Impact of Automotive GMT(Glassfiber reinforced Mat Thermoplastic) Bumper for '5Mhp Barrier Test'was simulated using ls-dyna. The FE model consists of foam which is energy absorber, bumper beam and stay etc. Bumper intrusion and deflection was compared with the experimental results. Effects of uncertainty of material property and deviation of impact velocity were considered and results were compared with those of base design. Effects of number of integration points through th thickness was also investigated.

  • PDF

Seismic performance and damage assessment of reinforced concrete bridge piers with lap-spliced longitudinal steels

  • Chung, Young S.;Park, Chang K.;Lee, Eun H.
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.99-112
    • /
    • 2004
  • It is known that lap splices in the longitudinal reinforcement of reinforced concrete (RC) bridge columns are not desirable for seismic performance, but it is sometimes unavoidable. Lap splices were practically located in the potential plastic hinge region of most bridge columns that were constructed before the 1992 seismic design provisions of the Korea Bridge Design Specification. The objective of this research is to evaluate the seismic performance of reinforced concrete (RC) bridge piers with lap splicing of longitudinal reinforcement in the plastic hinge region, to develop an enhancement scheme for their seismic capacity by retrofitting with glassfiber sheets, and to assess a damage of bridge columns subjected to seismic loadings for the development of rational seismic design provisions in low or moderate seismicity region. Nine (9) test specimens with an aspect ratio of 4 were made with three confinement ratios and three types of lap splice. Quasi-static tests were conducted in a displacement-controlled way under three different axial loads. A significant reduction of displacement ductility was observed for test columns with lap splices of longitudinal reinforcements, whose displacement ductility could be greatly improved by externally wrapping with glassfiber sheets in the plastic hinge region. A damage of the limited ductile specimen was assessed to be relatively small.

유리섬유 보강 원형 철근콘크리트 교각의 내진성능에 관한 준정적 실험연구 (Quasi-Static Test for Seismic Performance of Circular R.C. Bridge Piers Before and After Retrofitting)

  • 정영수;이강균;한기훈;이대형
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.107-118
    • /
    • 1999
  • 10 RC bridge piers have been made on a 1/3.4 scale model, and six piers of them were retrofitted with glassfiber. The have been tested in the quasi-static cyclic load so as to investigate their seismic enhancement before and after retrofitting with glassfibers. The objective of this experimental study is to investigate how to strength the ductility of reinforced concrete bridge piers which have been nonseismically designed and constructed in Korea before 1992. Important test parameters are axial load, load pattern, retrofit type. Glassfiber sheets were used for retrofitting in the plastic hinge region of concrete piers. The nonlinear behavior of bridge columns have been evaluated through their yield and ultimate strength, energy dissipation, displacement ductility and load-deflection characteristics under quasi-static cyclic loads. It can be concluded from the test that concrete piers strengthened with glassfibers have been enhanced for their ductile behavior by approximate 50%.

수종의 섬유보강재가 복합레진의 파절강도에 미치는 영향 (FRACTURE STRENGTH OF COMPOSITE RESIN WITH VARIOUS FIBER REINFORCING MATERIALS)

  • 박지만;조용범;홍찬의
    • Restorative Dentistry and Endodontics
    • /
    • 제25권3호
    • /
    • pp.371-380
    • /
    • 2000
  • The effect of fiber reinforcing materials on the fracture strength of composite resin was evaluated. Each ten composite resin bars reinforced by glassfiber[Fiber-Splint ML$^{(R)}$(Polydentia SA, Switzerland)], polyethylene fiber [Ribbond$^{(R)}$(Ribbond Inc., U.S.A.)] and polyaramid fiber[Kevlar$^{(R)}$(DuPont, U.S.A.)] were loaded under the 3-point compression technique. Another ten pure composite resin bars without reinforcement were used as a control group. Then mean fracture strength and standard deviation were calculated and a ANOVA and Scheffe test were used in statistics. The results were as follows: 1. Kevlar group showed the highest fracture strength as 175.5MPa (p<0.05). Fiber-Splint ML group showed the lowest fracture strength as 112.7MPa. 2. The mean value of fracture strength in Ribbond group was 136.4MPa, and that of unterated control group was 143.6MPa. No difference was found between the two groups. 3. Ribbond and Kevlar reinforcement groups showed a catastrophic failure, where complete separation of pieces occurs to a unseparated fracture pattern. The use of Kevlar reinforcement fibers with composite resin showed significant increase in the average load failure and the presence of the fibers did prevent the catastrophic crack propagation present in the unreinforced samples. The use of Ribbond reinforcement fibers with composite resin showed no significant increase in the average load failure. However, the presence of the fibers did prevent the catastrophic crack propagation. Because high strength of glassfiber are rapidly degraded on exposure to moisture and humidity. The use of Fiber-Splint ML reinforcement fibers with composite resin showed significant decrease in the average load failure and displayed catastrophic fractures.

  • PDF

준정적실험에 의한 섬유보강된 철근콘크리트 교각의 내진성능 평가 (Quasi-Static Test for Seismic Performance of R/C Bridge Piers Retrofitted with Glassfibers)

  • 이대형;이재형;정영수;박진영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.871-876
    • /
    • 2001
  • Recent earthquakes in California and Japan caused extensive damage to highway bridge structures. It is also thought that during probable earthquakes bridge structures in Korea could be failed due to the structural deficiencies, which were nonseismically designed and constructed before 1992. In these regards, innovative strengthening methods have been developed to repair reinforced concrete bridge columns, especially by glassfiber sheet bonding methods which are widely used today. The primary objective of this research is to investigate the seismic behavior of RC bridge columns retrofitted with composite straps and to propose pertinent guidelines of repair and rehabilitation method for earthquake resistant design procedure of RC bridges which are located in low or moderate seismicity regions. Six scaled-down concrete test specimens were made with test variables such as lap splice ratio, axial force ratio, confinement ratio, composite straps in the plastic hinge region. Pertinent design guidelines could be developed for the earthquake resistant design of RC bridge piers retrofitted with glassfibers in low or moderate seismic region.

  • PDF

Seismic Performance and Retrofit of Circular Bridge Piers with Spliced Longitudinal Steel

  • Chung, Young-Soo;Lee, Jae-Hyung
    • KCI Concrete Journal
    • /
    • 제14권3호
    • /
    • pp.130-137
    • /
    • 2002
  • It is known that lap splice in the longitudinal reinforcement of reinforced concrete(RC) bridge columns is not desirable for seismic performance, but it is sometimes unavoidable. Lap splices were practically located in the potential plastic hinge region of most bridge columns that were constructed before the adoption of the seismic design provision of Korea Bridge Design Specification on 1992. The objective of this research is to evaluate the seismic performance of reinforced concrete(RC) bridge piers with lap splicing of longitudinal reinforcement in the plastic hinge region, to develop the enhancement scheme of their seismic capacity by retrofitting with glassfiber sheets, and to develop appropriate limited ductility design concept in low or moderate seismicity region. Nine test specimens in the aspect ratio of 4 were made with three confinement ratios and three types of lap splice. Quasi-static test was conducted in a displacement-controlled way under three different axial load levels. A significant reduction of displacement ductility ratios was observed for test columns with lap splices of longitudinal steels.

  • PDF

원형중공 콘크리트 교각의 내진성능에 대한 실험적 연구 (Experimental Research for Seismic Performance of Circular Hollow R.C. Bridge Pier)

  • 한기훈;이강균;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.671-676
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers, circular hollow columns are widely used in Korean highway bridges. Since the occurrence of 1995 Kobe earthquake, there have been much concerns about seismic design for various infrastructures, inclusive of bridge structures. It is, however, understood that there are not much research works for nonlinear behavior of circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is investigate nonlinear behavior of circular hollow reinforced concrete bridge piers under the quasi-static cyclic load, and then to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It is concluded from quasi-static tests for 7 bridge piers that energy dissipation capacity and curvatures for a given displacement ductility factor $\{\mu}=frac{\Delta}{\Delta_y}$are about 20% higher for the seismically designed columns and about 70% higher for the retrofitted piers than the nonseismically designed columns in a conventional way.

  • PDF

추철근 겹침이음된 철근콘크리트 교각의 보강에 의한 내진성능평가 (Seismic Performance and Retrofit of Reinforced Concrete Bridge Piers with Spliced Longitudinal Steels)

  • 정영수;이재형
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.179-186
    • /
    • 2001
  • It has been known that lap splicing in the longitudinal reinforcement of bridge columns is not desirable for seismic performance, but it is sometimes unavoidable. Lap splices were usually be located in the plastic hinge region of most bridge columns that were constructed before the adoption of the seismic design provision of Korea Bridge Design Specification on 1992. This research is to evacuate the seismic performance of reinforced concrete bridge piers with lap splicing of longitudinal reinforcement in the plastic hinge region, and to develop the enhancement scheme of their seismic capacity by retrofitting with glassfiber sheets and to develop appropriate limited ductility design concept in low or moderate seismicity region. Nine test specimens in the aspect ratio of 4.0 were made with three confinement ratios and three types of lap splicing. Quasi-static tests under three different axial load levees were conducted. It has been observed that displacement ductility ratios of test columns with lap splicing were significantly reduced.

  • PDF