• Title/Summary/Keyword: Gleeble

Search Result 37, Processing Time 0.031 seconds

A Study on Quenching Speed Prediction Method of Specimen for Evaluating the Oxide Layer of Uncoated Boron Steel Sheet (비도금 보론강판 산화층 평가용 시편의 퀜칭속도 예측기법 연구)

  • Lee, J.H.;Song, J.H.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.17-22
    • /
    • 2022
  • Hot stamping is widely used to manufacture structural parts to satisfy requirements of eco-friendly vehicles. Recently, hot forming technology using uncoated steel sheet is being studied to reduce cost and solve patent problems. In particular, research is focused on process technology capable of suppressing the generation of an oxide layer. To evaluate the oxide layer in the hot stamping process, Gleeble testing machine can be used to evaluate the oxide layer by controlling the temperature history and the atmosphere condition. At this time, since cooling by gas injection is impossible to protect the oxide layer on the surface of a specimen, research on a method for securing a quenching speed through natural cooling is required. This paper proposes a specimen shape design method to secure a target quenching speed through natural cooling when evaluating the oxide layer of an un-coated boron steel sheet by Gleeble test. For the evaluation of the oxide layer of the un-coated steel sheet through the Gleeble test, dog-bone and rectangular type specimens were used. In consideration of the hot stamping process, the temperature control conditions for the Gleeble test were set and the quenching speed according to the specimen shape design was measured. Finally, the quenching speed sensitivity according to shape parameter was analyzed through regression analysis. A quenching speed prediction equation was then constructed according to the shape of the specimen. The constructed quenching speed prediction equation can be used as a specimen design guideline to secure a target quenching speed when evaluating the oxide layer of an un-coated boron steel sheet by the Gleeble test.

Hot Deformation Behavior of Bearing Steels and Their Optimal Hot Forging Conditions (베어링강의 고온변형특성과 열간 단조조건에 관한 연구)

  • 문호근;이재성;윤선준;전만수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.159-162
    • /
    • 2002
  • In this paper the stress-strain curves of bearing steels at hot working conditions are obtained by compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are obtained by tensile test with a computer controlled servo-hydraulic Gleeble 1500 testing machine. These tests have been focused to obtain the flow stress data and optimal hot forging conditions under various conditions of strain rates and temperatures. The strain rate sensitivity exponent and reduction of area of the materials are evaluated. Experimental results are resented for various conditions of temperatures and strain rates.

  • PDF

A Study on Hot Deformation Behavior of Bearing Steels (베어링강의 고온변형 특성에 관한 연구)

  • Moon, Ho-Keun;Lee, Jae-Seong;Yoo, Sun-Joon;Joun, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.614-622
    • /
    • 2003
  • In this paper, the stress-strain curves of bearing steels at hot working conditions are obtained by hot compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are also obtained by hot tensile test with a Gleeble 1500 testing machine. Experiments are conducted under the various strain-rates and temperatures and their results are used to obtain the flow stress information. A rigid thermo-viscoplastic finite element method is applied to the multi-stage hot forging process in order to predict temperature distribution of workpiece. The experimental results and the analysis results are used to obtain an optimal hot forging condition.

The Influence of [Mn/S] Ratios on the Fracture Morphology of a Heavy-section Steel Castings at Elevated Temperature (대형주강의 고온파단형태에 미치는 [Mn/S]비의 영향)

  • Kim, Sung-Gyoo;Kim, Ji-Tae;Park, Bong-Gyu;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.34 no.5
    • /
    • pp.170-178
    • /
    • 2014
  • Using the Gleeble test, the effects of [Mn/S] ratios and the presence of sulfides on the high-temperature fracture morphology of heavy-section steel castings were analysed via the observations of the microstructures. The specimens for which the [Mn/S] ratio was in the range of 60~80 showed a ductile fracture morphology with an area reduction of more than 60%, while some specimens with similar [Mn/S] ratios showed a brittle fracture morphology with an area reduction of 0.0% due to the liquidation of sulfides at the grain boundary. The fracture morphology was classified into three types in the Gleeble high-temperature tensile test specimens. The first type showed dimple formation at the grain boundary, the formation of globular MnS sulfides, and plastic deformation of sulfides at an elevated temperature, indicating a needle-point type of ductile fracture with area reductions of 96.0~97.8%. The second type was a knife-edge type brittle fracture with an area reduction of 0.0% due to the film-type liquidation of sulfides at the grain boundary, band-type liquidation, and the liquidation of a terraced nipple pattern. The third type was the typical ductile fracture with an area reduction of 31.3~81.0%, in accordance with the mixture of dimples with in the grains and terraced nipple pattern at the grain boundary.

Hot Ductility Behavior and Hot Cracking Susceptibility of Type 303 Austenitic Stainless Steel(1) -Hot ductility Behavior- (303 오스테나이트계 스테인레스강의 고온연성거동과 고온균열감수성(I) -고온연성거동-)

  • ;;Lundin, C. D.
    • Journal of Welding and Joining
    • /
    • v.6 no.1
    • /
    • pp.35-45
    • /
    • 1988
  • 오-스테나이트계 스테인레스강에 대한 용접은 용접재료의 개발과 더불어 각종 산업계에 널리 이용되고 있으며 최근 Type 303 오-스테나이트계 스테인레스강 등은 free machining재로써 널리 응용되고 있다. 그러나 이 303계는 피삭성, 절삭성, 칩형성개선을 위한 특수원소(Se, S 등)의 첨가 때문에 용접성에 문제점을 제기하고 있다. 본 연구에서는 Type 303을 중심으로 AISI 304-316NG 및 347NG계의 오-스테나이트계 스테인레스강의 고온연성거동과 고온균열감수성(용접성)에 관한 연구에 대한 검토중 고온연성거동에 관하여 조사하였다. 고온연성평가는 Gleeble Simulator에 의하여 재료와 방향성에 따라 검토하였으며, 그 결과 모든 재료는 압연방향을 종방으로 시험하였을 때는 거의 유사한 고온연성을 나타내었으나 횡방향으로 시험하였을 때는 종방향에 비하여 연성저하를 나타내었다. 이와 같은 고온연성은 후속연구에서 검토될 고온균열 감수성과 밀접한 관련성에 의하여 용접성을 평가할 수 있다.

  • PDF

고 Mn강의 용접 열영향부에서의 기계적 특성평가

  • Yu, Jae-Hong;Kim, Sang-Hun;Park, Yeong-Hwan;Lee, Chang-Hui
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.25-25
    • /
    • 2010
  • 8 wt.% 망간 (Mn) 이 함유된 마르텐사이트계 고 Mn강은 고강도용 강재로 산업현장에 적용될 수 있는 유용한 재료이다. 그러나, 다량의 망간의 함유로 인한 용접성 저하로 상용화를 위해서는 용접성 평가가 필요하다. 본 연구에서는 gleeble simulator 를 통해 열영향부를 재현한 후 local brittle zones(LBZs) 을 규명하였다. 모재는 Electron Probe Micro Analyzer (EPMA) 및 X-Ray Diffractometer(XRD) 로 분석결과 다량의 Mn 함유로 인해 lath마르텐사이트 미세조직과 소량의 잔류 오스테나이트로 구성되어 있었다. 용접부에서 모재까지 Vickers 경도계로 경도 분포를 측정한 결과 coarse-grained heat affected zone (CGHAZ) 에서 fine-grained heat affected zone (FGHAZ) 까지 경도 증가 후 subcritical heat affected zone (SCHAZ) 까지 급격한 경도 감소 거동을 보였다. 열영향부의 미세조직은 투과전자현미경 (TEM)으로 분석하였다. 연성취성천이온도 (DBTT) 측정을 위해 온도 구간을 상온, $0^{\circ}C$, $-20^{\circ}C$, $-40^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$으로 설정하여 charpy impact test를 시행하였다. 그 결과 coarse-grained heat affected zone(CGHAZ) 에서 조대한 결정립으로 인해 낮은 충격값을 보였다.

  • PDF

A Study on Repeat Heat Treating and Controlled Rolling of Mo-alloyed Plate Steels (Mo첨가 열연강판의 반복 열처리 제어압연에 관한 연구)

  • Lee, Jeong-Hun;Hong, Seung-Chan;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.740-747
    • /
    • 1999
  • Grain refinement is the only strengthening mechanism that improves both strength and toughness. Controlled rolling and accelerated cooling techniques have been known to be effective method to improve the mechanical properties by controlling the recrystallization and/or grain coarsening during processing. Repeat phase transformation $(\gamma/\alpha)$ by repeat heat treating is another way of grain refinement. In this study, a combined effect of controlled rolling and repeat heat treating was investigated. To study the effects of Mo addition and process parameters, Mo alloyed low carbon steels were prepared and thermomechanical controlled processes were simulated in the Gleeble system. The Mo addition resulted in an increasement of the grain coarsening temperature and suppress austenite recrystallization. The optimum condition for the refinement of austenite was obtained when the controlled rolling was performed twice with the same heat treatment condition, and reduction ratio of second pass was higher than that of first pass.

  • PDF

High Temperature Properties of Vanadium and Molybdenum Added High Silicon Ductile Iron (바나듐과 몰리브덴이 첨가된 고규소 구상흑연주철의 고온특성)

  • Park, Heung-Il;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.27 no.5
    • /
    • pp.203-208
    • /
    • 2007
  • The high temperature properties of vanadium and molybdenum added high silicon ductile iron, so called V-Mo-Si ductile iron, were investigated. The (V,Mo) complex carbides and Mo carbides precipitated at the cellular boundaries of the as-cast specimens. The microhardness of the (V,Mo) carbides were in the range of 553-619, while that of the Mo carbides in the range of 341-390. The thermo-mechanical tests were carried out with a Gleeble system at 700 and $800^{\circ}C$ under vacuum condition. The tensile strengths of the specimen tested at $700^{\circ}C$ with the dynamic deformation rate of 50 mm/sec and those with the static deformation rate of 0.15 mm/sec were 235.7 and 115.3 MPa, while the reduction in area were 23.7 and 22.4%, respectively. At the high dynamic deformation rates, the tensile strength was steeply increased due to promoting the brittle fracture of pearlite in the matrix of the specimens. But the changes of the reduction in area with the deformation rates on the same specimens were negligible. The weight gain of the V-Mo-Si specimens oxidized in the air atmosphere for 6 hours at 800 and $900^{\circ}C$ were 1.1 and 4.1.%, respectively. The cross-sectional microstructure of oxidized specimens consisted of the porous external scale layer grown outside from the original surface, the dense internal scale layer grown into the original surface, the decarburized ferrite layer between the internal scale and the matrix of base metal. The (V,Mo) carbides and Mo carbides formed in the matrix of as-cast specimen did not decompose during oxidation at 900 for 24 hours in air atmosphere.

Rolling Contact Fatigue Behavior and Microstructure Control to Medium Carbon Steel Base Hot Forgings (중탄소계 열간단조품의 미세조직과 구름피로거동)

  • Lee J. S.;Son C. H.;Moon H. K.;Song B. H.;Park C. N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.287-290
    • /
    • 2005
  • Once hot forgings for automotive parts such as wheel bearing flange to which cyclic asymmetric bending stress is continuously applied are produced, it is necessary to control their microstructure to obtain superior mechanical properties. It is however hard to control the microstructure uniformly because the strength is reduced as coarsening of ferrite grains. To investigate the microstructural alteration according to process variables during hot working, the variation of the ferrite grain size was studied by utilizing of the computer aided servo-hydraulic Gleeble tester which is hot deformation behavior reproduction equipment. In addition, the effect of the ferrite grain size of raw material on the austenite grain behavior of hot forgings was also examined. The rolling contact fatigue resistance of the induction hardened SAE 1055 steel was compared with the occasion of the same condition of SAE52100 bearing steel. As a result, it was confirmed that the ferrite grain sizes of the forgings depend on the heating temperature and cooling start temperature during hot forging and cooling processes. The induction hardened SAE1055 steel showed a superior rolling contact fatigue resistance to the induction hardened SAE52100 steel. The reason is that SAE1055 steel is freer from the material defect such as segregation than the comparative steel.

  • PDF

Effect of Deformation Temperature on Microstructure and Hardness of Plain Carbon Steels (변형 온도에 따른 탄소강의 미세조직 및 경도 변화)

  • Lee, T.;Park, S.H.;Lee, D.L.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.362-365
    • /
    • 2009
  • Microstructural evolution and the mechanical properties of various carbon steels were investigated with the variation deformation temperature to explore the optimum microstructure with excellent combination of strength and ductility. For this purpose, three carbon steels containing different carbon contents were deformed using Gleeble 3500 at temperatures including austenitic, austenitic/ferritic, austenitic/cementitic, ferritic/cementitic regions. The results showed that in the medium and high carbon steels, cementite particles became finer with decreasing deformation temperature resulting higher hardness but lower ductility. Further effort is needed to find out optimum microstructures with enhanced mechanical properties.

  • PDF